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The singular value decomposition (SVD)

The SVD is a way to study rectangular matrices using tools that
come from our work with symmetric matrices.

It doesn’t make direct sense to diagonalize a rectangular matrix,
but in some sense the SVD is the closest we can come.

It is a widely used result in applied mathematics.



Singular Values

Let 𝐴 by an 𝑚 × 𝑛 matrix. The singular values 𝜎𝑖 of 𝐴 are the
(positive) square roots of the eigenvalues of the 𝑛 × 𝑛 symmetric
matrix 𝐴𝑇 𝐴

𝜎𝑖 = √𝜆𝑖

Remember that, by the spectral theorem, 𝐴𝑇 𝐴 has real,
nonnegative eigenvalues, so these square roots make sense.

We arrange the singular values in decreasing order so that

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0



Singular values

If 𝑣1, … , 𝑣𝑛 are the unit eigenvectors of 𝐴𝑇 𝐴, then

‖𝐴𝑣𝑖‖2 = (𝐴𝑣𝑖) ⋅ (𝐴𝑣𝑖) = 𝑣𝑇
𝑖 𝐴𝑇 𝐴𝑣𝑖 = 𝜆𝑖‖𝑣𝑖‖2

so the singular values 𝜎𝑖 measure the amount that 𝐴 “stretches”
𝑣𝑖.



Nonzero singular values give rank

Some of the singular values 𝜎𝑖 of 𝐴 and corresponding eigenvalues
𝜆𝑖 of 𝐴𝑇 𝐴 could be zero.

If 𝜆𝑘 is zero, then

𝐴𝑣𝑘 ⋅ 𝐴𝑣𝑘 = 𝑣𝑇
𝑘 𝐴𝑇 𝐴𝑣𝑘 = 𝜆𝑘(𝑣𝑘 ⋅ 𝑣𝑘) = 0

so 𝐴𝑣𝑘 = 0.

Suppose that the first 𝑟 of them are non zero. Then, if 𝑣𝑖 are the
corresponding eigenvectors of 𝐴𝑇 𝐴, the vectors

𝐴𝑣1, … , 𝐴𝑣𝑟

form an orthogonal basis for the column space Col(𝐴), and 𝐴 has
rank 𝑟.



Nonzero singular values give rank (continued)
To see that they are orthogonal, compute

𝐴𝑣𝑖 ⋅ 𝐴𝑣𝑗 = 𝑣𝑇
𝑖 𝐴𝑇 𝐴𝑣𝑗 = 𝜆𝑗𝑣𝑇

𝑖 𝑣𝑗 = 0

since the 𝑣𝑖 are orthogonal. The 𝐴𝑣𝑖 also all belong to the column
space of 𝐴.

Suppose that 𝑦 is any vector in the column space of 𝐴. Then
𝑦 = 𝐴𝑥 for some 𝑥, and

𝑥 =
𝑛

∑
𝑖=1

(𝑥 ⋅ 𝑣𝑖)𝑣𝑖.

Apply 𝐴 to this and since 𝐴𝑣𝑘 = 0 for 𝑘 > 𝑟, we see that 𝐴𝑥 is in
the span of 𝐴𝑣1, … , 𝐴𝑣𝑟.

So 𝐴𝑣1, … , 𝐴𝑣𝑟 are orthogonal (hence linearly independent) and
span the column space of 𝐴.



The SVD
Suppose that 𝐴 is an 𝑚 × 𝑛 matrix of rank 𝑟. Then there exists
an 𝑚 × 𝑛 matrix Σ which is “diagonal” in the sense that it looks
like this:

Figure 1: “Diagonal” Matrix for SVD

where 𝐷 is a truly diagonal 𝑟 × 𝑟 matrix whose entries are the
nonzero singular values of 𝐴 (in descending order), and orthogonal
matrices 𝑈 of size 𝑚 × 𝑚 and 𝑉 of size 𝑛 × 𝑛 such that

𝐴 = 𝑈Σ𝑉 𝑇 .

Note: 𝑈 and 𝑉 are not uniquely determined here, but Σ is.



Constructing the SVD

1. Let 𝑢𝑖 = 𝐴𝑣𝑖
‖𝐴𝑣𝑖‖ = 𝜎−1

𝑖 𝐴𝑣𝑖 for 𝑖 = 1, … , 𝑟. This gives an
orthonormal family. Extend this to an orthonormal basis
𝑢1 … , 𝑢𝑚 of R𝑚.

2. Let 𝑈 be the matrix whose columns are the 𝑢𝑖 and 𝑉 be the
matrix whose columns are the 𝑣𝑖.

3. Notice that 𝐴𝑉 has columns 𝜎𝑖𝑢𝑖 for 𝑖 = 1, … , 𝑟 and the rest
zero. That’s what you get if you compute 𝑈Σ.

4. So 𝐴𝑉 = 𝑈Σ or 𝐴 = 𝑈Σ𝑉 −1 = 𝑈Σ𝑉 𝑇 .



Terminology

Let 𝐴 = 𝑈Σ𝑉 𝑇 be a singular value decomposition of 𝐴.

The columns of 𝑈 are called the left singular vectors of 𝐴.

The columns of 𝑉 are called the right singular vectors of 𝐴.



Numerical Example

import numpy as np
from sympy import latex, Matrix
from IPython.display import Latex

A = np.array([[1, 3, 2], [2, 5, 6]])
# note that the routine returns "V"
# but we would call it "V^T"
U, Sigma, V = np.linalg.svd(A, full_matrices=True)



Results

Matrix 𝐴 =[1 3 2
2 5 6]

𝑈 = [−0.41 0.91
−0.91 −0.41]

Σ = [8.84 0 0
0 0.94 0]

𝑉 𝑇 = ⎡⎢
⎣

−0.25 −0.66 −0.71
0.09 0.72 −0.69

−0.96 0.24 0.12
⎤⎥
⎦



Four Fundamental Subspaces

Let 𝐴 be an 𝑚 × 𝑛 matrix with left singular vectors 𝑢1, … , 𝑢𝑚,
right singular vectors 𝑣1, … , 𝑣𝑛, singular values 𝜎1, … , 𝜎𝑛, and
rank 𝑟.

1. 𝑢1, … , 𝑢𝑟 form an orthonormal basis for the column space of
𝐴. Remember that the 𝑢𝑖 are normalized versions of 𝐴𝑣𝑖
where 𝑣𝑖 are the right singular vectors. The 𝐴𝑣𝑖 for
𝑖 = 1, … , 𝑟 span the column space of 𝐴.

2. 𝑢𝑟+1, … , 𝑟𝑛 form an orthonormal basis for the null space of
𝐴𝑇 (which is the same as the 𝐶𝑜𝑙(𝐴)⟂.)



Four subspaces continued

3. 𝑣𝑟+1, … , 𝑣𝑛 form an orthonormal basis for the null space of 𝐴.
This is because 𝐴𝑣𝑗 = 0 for 𝑗 = 𝑟 + 1, … , 𝑛, they are
independent (because orthonormal), and the rank of 𝐴 is 𝑟 so
the dimension of the null space is 𝑛 − 𝑟.

4. 𝑣1, … , 𝑣𝑟 form an orthonormal basis for the row space of 𝐴.
This is because they are an orthonormal basis for 𝑁𝑢𝑙𝑙(𝐴)⟂

which is the same as 𝐶𝑜𝑙(𝐴𝑇 ) which is 𝑅𝑜𝑤(𝐴).



The Pseudoinverse

One can use the SVD to solve linear systems and to “approximate”
the inverse of matrices that aren’t square.

Suppose that 𝐴 has rank 𝑟, so that Σ has 𝑟 nonzero entries. Let
Σ𝑟 be the square 𝑟 × 𝑟 matrix with the nonzero signular values.

Split up 𝑈 and 𝑉 so that 𝑈𝑟 consists of only the first 𝑟 columns of
𝑈 , and 𝑉𝑟 consists of only the first 𝑟 columns of 𝑉 . Then 𝑈 is
𝑚 × 𝑟 and 𝑉 is 𝑛 × 𝑟.

Then 𝐴 = 𝑈𝑟Σ𝑟𝑉 𝑇
𝑟 . The “pseudoinverse” of 𝐴 is

𝑉𝑟Σ−1
𝑟 𝑈𝑇

𝑟

.



Application of the pseudoinverse

Consider the matrix equation 𝐴𝑥 = 𝑏 (here we don’t assume 𝐴 is
square).

If we set ̂𝑥 = 𝐴+𝑏 where 𝐴+ is the pseudoinverse, then ̂𝑥 is the
vector so that 𝐴 ̂𝑥 is as close to 𝑏 as possible.

If 𝐴 is invertible, or if 𝑏 is in the column space of 𝐴, then ̂𝑥 is an
exact solution.



Example
import numpy as np
from sympy import latex, Matrix
from IPython.display import Latex

A = np.array([[1, 3, 2], [2, 5, 6]])
# note that the routine returns "V"
# but we would call it "V^T"
U, Sigma, V = np.linalg.svd(A, full_matrices=True)
Sigmar=np.diag(Sigma)
Vt=V.transpose()
Ap = Vt[:,:2]@np.linalg.inv(np.diag(Sigma))@U.transpose()
display(Latex("$A^{+}=" + f"{latex(Matrix(np.round(Ap,2)))}$"))

𝐴+ = ⎡⎢
⎣

0.1 −0.01
0.72 −0.25

−0.64 0.38
⎤⎥
⎦



Example continued.

Consider the equation
𝐴𝑥 = [ 6

13]

It has infinitely many solutions. If we use the pseudo inverse, we
find one of them:

𝐴+ [ 6
13] = ̂𝑥

̂𝑥 = ⎡⎢
⎣

0.42
1.145
1.072

⎤⎥
⎦

This turns out to be the solution with minimal norm (that is, the
shortest vector that solves the linear system).


