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The singular value decomposition (SVD)

The SVD is a way to study rectangular matrices using tools that
come from our work with symmetric matrices.

It doesn’t make direct sense to diagonalize a rectangular matrix,
but in some sense the SVD is the closest we can come.

It is a widely used result in applied mathematics.



Singular Values

Let A by an m X n matrix. The singular values o,; of A are the
(positive) square roots of the eigenvalues of the n x n symmetric

matrix AT A
0; = \/)\7

Remember that, by the spectral theorem, AT A has real,
nonnegative eigenvalues, so these square roots make sense.

We arrange the singular values in decreasing order so that

0, >20y22>20,20



Singular values

If vq,...,v,, are the unit eigenvectors of AT A, then
|Av;]|* = (Av;) - (Avy) = o] AT Av; = Ao, |2

so the singular values o; measure the amount that A “stretches”

v;.



Nonzero singular values give rank

Some of the singular values o; of A and corresponding eigenvalues
\; of AT A could be zero.

If A\, is zero, then
Avk . A'Uk = U{ATAUk = Ak‘<vk . Uk) = 0
so Av, = 0.

Suppose that the first 7 of them are non zero. Then, if v; are the
corresponding eigenvectors of AT A, the vectors

Avy, ..., Av,

form an orthogonal basis for the column space Col(A), and A has
rank 7.



Nonzero singular values give rank (continued)

To see that they are orthogonal, compute

— T AT Ary. — \sTay . —
Av; - Av; = v; AT Avy = A\vjv; =0

since the v; are orthogonal. The Awv; also all belong to the column
space of A.

Suppose that y is any vector in the column space of A. Then
y = Ax for some z, and

T = zn:(ac - 0;)V;.

1

Apply A to this and since Av;, = 0 for k > r, we see that Az is in
the span of Avy,..., Av

re

So Avy, ..., Av, are orthogonal (hence linearly independent) and
span the column space of A.



The SVD

Suppose that A is an m X n matrix of rank r. Then there exists
an m X n matrix % which is “diagonal” in the sense that it looks

like this:
D 0
X = [ 0 0:| - N — I TOWS

L n — r columns

Figure 1: "Diagonal” Matrix for SVD
where D is a truly diagonal r X r matrix whose entries are the

nonzero singular values of A (in descending order), and orthogonal
matrices U of size m x m and V of size n X n such that

A=UxVT.



Constructing the SVD

1. Let u; = Hj:izi\l =o; Av, for i = 1,...,r. This gives an
orthonormal family. Extend this to an orthonormal basis

m
Uug ..., u,, of R™.

2. Let U be the matrix whose columns are the u; and V' be the
matrix whose columns are the v,.

3. Notice that AV has columns o;u; for i = 1,...,r and the rest
zero. That’s what you get if you compute UX.

4. So AV =UXor A=UXV 1 =UXVT.



Terminology

Let A=UXVT be a singular value decomposition of A.
The columns of U are called the left singular vectors of A.

The columns of V' are called the right singular vectors of A.



Numerical Example

import numpy as np
from sympy import latex, Matrix
from IPython.display import Latex

A = np.array([[1, 3, 2], [2, 5, 6]1])

# note that the routine returns "V"

# but we would call it "V°T"

U, Sigma, V = np.linalg.svd(A, full matrices=True)



Results

I\/IatrixA:{1 3 2]

2 5 6
—0.41 091
U= [—0.91 —0.41]
884 0 0
E—{ 0 094 o]

0.09 0.72 —0.69
—0.96 0.24 0.12

—0.25 —0.66 —0.71]
VT =




Four Fundamental Subspaces

Let A be an m x n matrix with left singular vectors uy, ..., u,,,
right singular vectors v, ..., v,,, singular values o4, ..., 0,,, and
rank r.

1. uy,...,u, form an orthonormal basis for the column space of

A. Remember that the u; are normalized versions of Av;,
where v; are the right singular vectors. The Av; for
i =1,...,7r span the column space of A.

2. U, q,...,7, form an orthonormal basis for the null space of
AT (which is the same as the Col(A)*))



Four subspaces continued

3. Vyiq,-.-, 0, form an orthonormal basis for the null space of A.
This is because Avj =0forj=r+1,...,n, they are
independent (because orthonormal), and the rank of A is r so
the dimension of the null space is n — 7.

4. vq,...,v, form an orthonormal basis for the row space of A.
This is because they are an orthonormal basis for Null(A)+
which is the same as Col(AT) which is Row(A).



The Pseudoinverse

One can use the SVD to solve linear systems and to “approximate”
the inverse of matrices that aren’t square.

Suppose that A has rank r, so that ¥ has r nonzero entries. Let
), be the square r X r matrix with the nonzero signular values.

Split up U and V so that U, consists of only the first r columns of
U, and V, consists of only the first  columns of V. Then U is
mxrand Visn xr.

Then A =U,X,V,I. The “pseudoinverse” of A is

V.E Ut



Application of the pseudoinverse

Consider the matrix equation Ax = b (here we don't assume A is
square).

If we set Z = ATb where A" is the pseudoinverse, then 7 is the
vector so that AZ is as close to b as possible.

If A is invertible, or if b is in the column space of A, then Z is an
exact solution.



Example

import numpy as np
from sympy import latex, Matrix
from IPython.display import Latex

A = np.array([[1, 3, 2], [2, 5, 6]])

# note that the routine returns "V"

# but we would call it "V°T"

U, Sigma, V = np.linalg.svd(A, full matrices=True)
Sigmar=np.diag(Sigma)

Vt=V.transpose()

Ap = Vt[:,:2]0np.1linalg.inv(np.diag(Sigma))QU.transpose()
display(Latex("$A~{+}=" + f"{latex(Matrix(np.round(Ap,2))).

0.1 —0.01
At =1072 —0.25
—0.64 0.38



Example continued.

Consider the equation
6
Ax = {13}

It has infinitely many solutions. If we use the pseudo inverse, we

find one of them:
6 ~
+ _
A [13] =7z

0.42
= |1.145
1.072

This turns out to be the solution with minimal norm (that is, the
shortest vector that solves the linear system).



