1.3 Vector Equations

Jeremy Teitelbaum

Vectors

A vector (in \mathbf{R}^n) is an *n*-tuple of real numbers. For example

$$v = (-1, 3, 2, 5, 0, 7)$$

is a vector in \mathbf{R}^6 .

Vectors can be written as matrices with one column (column vectors).

$$v = \begin{pmatrix} -1\\3\\2\\5\\0\\7 \end{pmatrix}$$

Vector arithmetic

Vectors can be added:

$$\begin{pmatrix} 1\\-3\\5 \end{pmatrix} + \begin{pmatrix} 4\\-1\\11 \end{pmatrix} = \begin{pmatrix} 5\\-4\\16 \end{pmatrix}$$

Vectors can be multiplied by a number (a *scalar*):

$$\begin{pmatrix} 1\\ -3\\ 5 \end{pmatrix} = \begin{pmatrix} 3\\ -9\\ 15 \end{pmatrix}$$

Geometry: Scalar Multiplication

If \mathbf{v} is a vector, and a is a scalar (a real number) then av "points in the same direction" but it's length is "scaled by a."

Scalar multiplication

Geometry: Addition

This illustrates the "parallelogram law." A similar picture holds in

Linear combinations

If v_1,v_2,\ldots,v_k are k vectors in ${\bf R}^n,$ and a_1,\ldots,a_k are constants (scalars), then the vector

$$y=a_1v_1+a_2v_2+\dots+a_kv_k$$

is called a *linear combination* of v_1, \ldots, v_k .

Linear Combination Example

lf

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

then the linear combinations of \boldsymbol{v}_1 and \boldsymbol{v}_2 are

$$y = a_1 v_1 + a_2 v_2 = \begin{pmatrix} a_1 \\ a_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ a_2 \\ a_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_1 + a_2 \\ a_2 \end{pmatrix}$$

The *span* of a set of vectors in \mathbb{R}^n is the collection of all possible linear combinations of the set.

In the previous example, the span of v_1 and v_2 is all vectors $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ such that you can find a_1 and a_2 so that:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ a_2 \\ a_2 \end{pmatrix}$$

This means that $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is in the span of v_1 and v_2 if, given x, y, z, you can find a_1, a_2 so that

$$\begin{array}{rcl} a_1 & = & x \\ a_1 + a_2 & = & y \\ a_2 & = & z \end{array}$$

In augmented matrix form this is

$$\begin{pmatrix} 1 & 0 & x \\ 1 & 1 & y \\ 0 & 1 & z \end{pmatrix}$$

Using row reduction this yields

$$\begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y-x \\ 0 & 0 & z-y+x \end{pmatrix}$$

This system has a solution (is consistent) exactly when z - y + x = 0 or y = z + x.

So

$$v = \begin{pmatrix} 2\\1\\-1 \end{pmatrix}$$

is in the span, but

$$w = \begin{pmatrix} 2\\1\\1 \end{pmatrix}$$

is not.

More generally if v_1,\ldots,v_k are vectors in ${\bf R}^n,$ then a vector w in ${\bf R}^n$ belongs to the span of the v_i if and only if the linear system with augmented matrix

$$M = \begin{bmatrix} v_1 & v_2 & \cdots & v_k & w \end{bmatrix}$$

has a solution (is consistent).

Here the matrix M has the indicated vectors as its columns. It is an $n\times (k+1)$ matrix.

Examples

ls

$$\begin{pmatrix} -5\\11\\-7 \end{pmatrix}$$

in the span of the vectors

$$\begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix}, \begin{pmatrix} 0\\ 5\\ 5 \end{pmatrix}, \begin{pmatrix} 2\\ 0\\ 8 \end{pmatrix}$$

Matrix form

Associated matrix

$$\begin{bmatrix} 1 & 0 & 2 & -5 \\ -2 & 5 & 0 & 11 \\ 2 & 5 & 8 & -7 \end{bmatrix}$$

Echelon Form:

 $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & \frac{4}{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

So the last column is *not* in the span of the first three.