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Gram Schmidt

In our discussion so far we have been handed orthogonal bases for
various subspaces.

How do we find such a thing?

Problem: Given a set of vectors vy, ..., v, in R", find an
orthogonal basis (or an orthonormal basis) for the span W of those
vectors.

Strategy: Work systematically:

P Start with vy; it becomes u;.

P Subtract the component of v, in the v, direction from v,; call
this u,.

P Subtract the projection of v into the span of u; and u,y from
v3, and call that us.

P Continue in this way, subtracting the projection of v,, from

the span of uq,...,u,_;, to obtain u,,.

If you normalize these vectors u,; you get an orthonormal basis.



Gram Schmidt (Example)

Suppose
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Example (continued)

The third vector
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Also vg - ug = Vg - Uy — 3/4vg - vy = 1/2. So
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The QR decomposition

Suppose that A is an n X m matrix with linearly independent
columns. Then there is an orthogonal matrix @) (of size n x m)
and an upper triangular matrix R of size m X m so that

A=QR

The columns of () form an orthonormal basis for the column space
of A; QTQ = I; and the diagonal entries of R are positive.
(This is called the "QR" decomposition of A).

It's really a restatement of the Gram-Schmidt process.



The QR decomposition

Let A be an n x m matrix. To compute the QR decomposition,
we apply Gram-Schmidt to the columns of A.

Each step in GS corresponds to multiplying A on the right by an
upper triangular matrix.



GS and QR example

Suppose that

A=

1 2 -1
3 —5 2
0o 2 -4

We wish to apply Gram-Schmidt to the columns of A. We leave
the first column alone. Multiplying A on the right by

1
e= |0
0

extracts the first column:



GS/QR continued

The next step is to compute
v2 - Uy

Uy = Uy — Uy

Uy - Uy
Since vy -u; =2—15 = —13 and u; - u; = 9+ 1 = 10 this means
13 33/10
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This second vector can be obtained by multiplying A on the right
by
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so that
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GS and QR continued

Combining steps 1 and 2 we have

1 13/10 1 33/10
Alo 1 | =|3 —11/10
0 0 0o 2

The last step is to compute

Vo - U Vo - U
Uy = Vg — 3 2u2— 3 1u1
Ug - Ug Uy - Uy

This gives
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QR and GS continuedf

In terms of the matrix A, computing u3 comes from multiplying A
on the right by
—1/2
€3 = [270/322]
1

So we've shown that

3 =5 2|]0 1 270/32 3 —11/10 —136/322

[1 2 —1] {1 13/10 —1/2} [1 33/10  408/322
0 2 —4][0 o0 1 0 2 —748/322



QR and GS continued

If we let
1 33/10 408/322
Q=13 —11/10 —136/322
0 2 —748/322
and

R=1[0 1 270/32

1 13/10 —1/2 ]
0 0 1

then QTQ =1 and AR = Q.

Also R is invertible (it's diagonal with ones on the diagonal) so

A=QR™.



Orthogonal decomposition

The QR decomposition usually has A a square matrix and () an
orthogonal matrix meaning that its columns aren’t only orthogonal
but orthonormal. We can do this by normalizing the columns.

We have

Q' =QZ
where
1/v/10 0 0
Z=1| 0 1/4/161/10 0
0 0 1/4/2312/322



QR decomposition concluded

Then Q’ satisfies Q' = Q7 and
A=QZ'R'=QR

where
R =Z1R!

is still upper triangular.



Geometric interpretation

A linear transformation like = — Ax splits into two parts — a shear
(coming from the R) and a rotation (coming from Q).



