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Gram Schmidt
In our discussion so far we have been handed orthogonal bases for
various subspaces.

How do we find such a thing?

Problem: Given a set of vectors 𝑣1, … , 𝑣𝑘 in R𝑛, find an
orthogonal basis (or an orthonormal basis) for the span 𝑊 of those
vectors.

Strategy: Work systematically:
▶ Start with 𝑣1; it becomes 𝑢1.
▶ Subtract the component of 𝑣2 in the 𝑣1 direction from 𝑣2; call

this 𝑢2.
▶ Subtract the projection of 𝑣3 into the span of 𝑢1 and 𝑢2 from

𝑣3, and call that 𝑢3.
▶ Continue in this way, subtracting the projection of 𝑣𝑛 from

the span of 𝑢1, … , 𝑢𝑛−1, to obtain 𝑢𝑛.

If you normalize these vectors 𝑢𝑖 you get an orthonormal basis.



Gram Schmidt (Example)

Suppose

𝑣1 =
⎡
⎢⎢
⎣

1
1
1
1

⎤
⎥⎥
⎦

, 𝑣2 =
⎡
⎢⎢
⎣

0
1
1
1

⎤
⎥⎥
⎦

, 𝑣3 =
⎡
⎢⎢
⎣

0
0
1
1

⎤
⎥⎥
⎦

The first two vectors in the sequence of G-S vectors is

𝑢1 = 𝑣1, 𝑢2 = 𝑣2 − 3/4𝑣1 =
⎡
⎢⎢
⎣

−3/4
1/4
1/4
1/4

⎤
⎥⎥
⎦



Example (continued)

The third vector

𝑢3 = 𝑣3 − 𝑣3 ⋅ 𝑢1
𝑢1 ⋅ 𝑢1

𝑢1 − 𝑣3 ⋅ 𝑢2
𝑢2 ⋅ 𝑢2

Now 𝑢1 ⋅ 𝑢1 = 4 and

𝑢2 ⋅ 𝑢2 = 𝑣2 ⋅ 𝑣2 − 3/2𝑣2 ⋅ 𝑣1 + 9/16𝑣1 ⋅ 𝑣1 = 3 − 9/2 + 9/4 = 3/4

Also 𝑣3 ⋅ 𝑢2 = 𝑣3 ⋅ 𝑣2 − 3/4𝑣3 ⋅ 𝑣1 = 1/2. So

𝑢3 = 𝑣3 − 2
4𝑢1 − 2

3𝑢2 =
⎡
⎢⎢
⎣

0
−2/3
1/3
1/3

⎤
⎥⎥
⎦



The QR decomposition

Suppose that 𝐴 is an 𝑛 × 𝑚 matrix with linearly independent
columns. Then there is an orthogonal matrix 𝑄 (of size 𝑛 × 𝑚)
and an upper triangular matrix 𝑅 of size 𝑚 × 𝑚 so that

𝐴 = 𝑄𝑅

The columns of 𝑄 form an orthonormal basis for the column space
of 𝐴; 𝑄𝑇 𝑄 = 𝐼 ; and the diagonal entries of 𝑅 are positive.

(This is called the “QR” decomposition of 𝐴).

It’s really a restatement of the Gram-Schmidt process.



The QR decomposition

Let 𝐴 be an 𝑛 × 𝑚 matrix. To compute the 𝑄𝑅 decomposition,
we apply Gram-Schmidt to the columns of 𝐴.

Each step in 𝐺𝑆 corresponds to multiplying 𝐴 on the right by an
upper triangular matrix.



GS and QR example
Suppose that

𝐴 = ⎡⎢
⎣

1 2 −1
3 −5 2
0 2 −4

⎤⎥
⎦

We wish to apply Gram-Schmidt to the columns of 𝐴. We leave
the first column alone. Multiplying 𝐴 on the right by

𝑒 = ⎡⎢
⎣

1
0
0
⎤⎥
⎦

extracts the first column:

𝐴𝑒1 = ⎡⎢
⎣

1
3
0
⎤⎥
⎦

.



GS/QR continued
The next step is to compute

𝑢2 = 𝑣2 − 𝑣2 ⋅ 𝑢1
𝑢1 ⋅ 𝑢1

𝑢1

Since 𝑣2 ⋅ 𝑢1 = 2 − 15 = −13 and 𝑢1 ⋅ 𝑢1 = 9 + 1 = 10 this means

𝑢2 = 𝑣2 + 13
10𝑢1 = ⎡⎢

⎣

33/10
−11/10

2
⎤⎥
⎦

.

This second vector can be obtained by multiplying 𝐴 on the right
by

𝑒2 = ⎡⎢
⎣

13/10
1
0

⎤⎥
⎦

so that

𝐴𝑒2 = ⎡⎢
⎣

33/10
−11/10

2
⎤⎥
⎦



GS and QR continued
Combining steps 1 and 2 we have

𝐴 ⎡⎢
⎣

1 13/10
0 1
0 0

⎤⎥
⎦

= ⎡⎢
⎣

1 33/10
3 −11/10
0 2

⎤⎥
⎦

The last step is to compute

𝑢3 = 𝑣3 − 𝑣3 ⋅ 𝑢2
𝑢2 ⋅ 𝑢2

𝑢2 − 𝑣3 ⋅ 𝑢1
𝑢1 ⋅ 𝑢1

𝑢1

This gives

𝑢3 = 𝑣3 − −27/2
161/10𝑢2 − 5

10𝑢1 = 1
322

⎡⎢
⎣

408
−136
−748

⎤⎥
⎦

.



QR and GS continuedf

In terms of the matrix 𝐴, computing 𝑢3 comes from multiplying 𝐴
on the right by

𝑒3 = ⎡⎢
⎣

−1/2
270/322

1
⎤⎥
⎦

So we’ve shown that

⎡⎢
⎣

1 2 −1
3 −5 2
0 2 −4

⎤⎥
⎦

⎡⎢
⎣

1 13/10 −1/2
0 1 270/32
0 0 1

⎤⎥
⎦

= ⎡⎢
⎣

1 33/10 408/322
3 −11/10 −136/322
0 2 −748/322

⎤⎥
⎦



QR and GS continued

If we let

𝑄 = ⎡⎢
⎣

1 33/10 408/322
3 −11/10 −136/322
0 2 −748/322

⎤⎥
⎦

and

𝑅 = ⎡⎢
⎣

1 13/10 −1/2
0 1 270/32
0 0 1

⎤⎥
⎦

then 𝑄𝑇 𝑄 = 𝐼 and 𝐴𝑅 = 𝑄.

Also 𝑅 is invertible (it’s diagonal with ones on the diagonal) so
𝐴 = 𝑄𝑅−1.



Orthogonal decomposition

The 𝑄𝑅 decomposition usually has 𝐴 a square matrix and 𝑄 an
orthogonal matrix meaning that its columns aren’t only orthogonal
but orthonormal. We can do this by normalizing the columns.

We have

𝑢1 ⋅ 𝑢1 = 10, 𝑢2 ⋅ 𝑢2 = 161/10, 𝑢3 ⋅ 𝑢3 = 2312/322

𝑄′ = 𝑄𝑍
where

𝑍 = ⎡⎢
⎣

1/
√

10 0 0
0 1/√161/10 0
0 0 1/√2312/322

⎤⎥
⎦



QR decomposition concluded

Then 𝑄′ satisfies 𝑄−1 = 𝑄𝑇 and

𝐴 = 𝑄′𝑍−1𝑅−1 = 𝑄′𝑅′

where
𝑅′ = 𝑍−1𝑅−1

is still upper triangular.



Geometric interpretation

A linear transformation like 𝑥 ↦ 𝐴𝑥 splits into two parts – a shear
(coming from the 𝑅) and a rotation (coming from 𝑄).


