Inner Products and Orthogonality

Jeremy Teitelbaum

The inner (dot) product.

If u and v are vectors in \mathbb{R}^n , then the *dot product* or *inner product* of u and v is

$$
u \cdot v = u^T v = u_1 v_1 + \dots + u_n v_n.
$$

For example if

$$
u = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}, v = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}
$$

then

$$
u\cdot v=(2)(1)+(3)(-1)+(-1)(0)=2-3=-1\ldots
$$

Key properties of the dot product

Let **u**, **v**, and **w** be vectors in \mathbb{R}^n , and let c be a scalar. Then

a. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ b. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ c. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$ d. $\mathbf{u} \cdot \mathbf{u} \geq 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$

Figure 1: Theorem 1 (p. 375)

Length and distance

The *length* or *norm* of a vector (written $||v||$) is

$$
\|v\|=\sqrt{v_1^2+\cdots+v_n^2}
$$

It is the "euclidean length" of the vector by the Pythagorean theorem.

Scaling a vector scales its length:

$$
\|cv\| = |c|\|v\|
$$

The distance between u and v is $||u - v||$ (this is the "distance formula").

If v is a vector, then

$$
u = \frac{v}{\|v\|}
$$

is a vector of length one that "points in the same direction as v ". Such a vector is called a *unit vector*.

Orthogonality

Two vectors are "orthogonal" (or "perpendicular") if they meet at a right angle.

One way to describe this is to say that u and v are perpendicular if *the distance from* u *to* v *is the same as the distance from* u *to* $-v$.:

$$
||u - v||^2 = ||u + v||^2
$$

Figure 2: Perpendicular Vectors

Dot product zero means orthogonal

In other words

$$
||u||2 + ||v||2 - 2(u \cdot v) = ||u||2 + ||v||2 + 2(u \cdot v)
$$

or

$$
u\cdot v=0
$$

Key idea: u and v are orthognal if and only if $u \cdot v = 0$.

Orthogonal Complements

Let W be a subspace of \mathbb{R}^n .

The "orthogonal complement" to W, written W^{\perp} , is

$$
W^{\perp} = \{v|v \cdot w = 0 \text{ for all } w \in W\}
$$

For example, if W is the plane in \mathbb{R}^3 spanned by $w_1 = (2, 3, 1)$ and $w_2 = (-1, 1, 0)$, then $z \in W^{\perp}$ means

$$
z\cdot(aw_1+bw_2)=0
$$

for any a, b .

It's enough that $z \cdot w_1 = 0$ and $z \cdot w_2 = 0$.

Orthogonal complements continued

This gives two equations:

$$
2z_1 + 3z_2 + z_3 = 0
$$

$$
-z_1 + z_2 = 0
$$

which has a one dimensional solution space spanned by

 $(1, 1, -5)$

Orthogonal complements - properties

Suppose W is a subspace of \mathbb{R}^n .

- 1. $x \in W^{\perp}$ if and only if $x \cdot u = 0$ for all u in a spanning set of W . (so you only need to check finitely many vectors to cover all of the elements of W).
- 2. W^{\perp} is a subspace of \mathbf{R}^{n} .

Orthogonal complements and matrices

Let A be an $n \times m$ matrix. Then

$$
\text{Null}(A)^{\perp} = \text{Row}(A)
$$

$$
\text{Null}(A) = \text{Row}(A)^{\perp}
$$

and

$$
Col(A)^{\perp} = Null(A^T)
$$

$$
Col(A) = Null(A^T)^{\perp}
$$

The "Law of Cosines" tells us that

 $u \cdot v = ||u|| ||v|| \cos \theta$

where θ is the angle between u and v .

A set u_1, \dots, u_k of vectors in \mathbf{R}^n is an *orthogonal set* if any pair of (different) vectors from the set are orthogonal.

It is an *orthonormal* set if in addition the vectors have length one.

Key point: An orthogonal set is linearly independent. Therefore if S is orthogonal then it is a basis for its span.

Orthogonal basis

A basis for a subspace W is orthogonal if it is an orthogonal set. Suppose y is any vector in W and u_1, \dots, u_k are an orthogonal basis. Then

$$
y=\frac{y\cdot u_1}{u_1\cdot u_1}u_1+\cdots+\frac{y\cdot u_k}{u_k\cdot u_k}u_k
$$

To see this, write

$$
y = c_1 u_1 + \dots + c_k u_k
$$

and compute $y \cdot u_j$ on both sides to solve for c_j .

Orthogonal projection

Let u be a vector in \mathbb{R}^n . We can decompose a vector y into a part that is "parallel" to u and a part that is *perpendicular* to u .

orthogonal to **u**.

Figure 3: Orthogonal Projection

Orthogonal projection continued

In particular:

$$
\hat{y} = \frac{y \cdot u}{u \cdot u} u
$$

is parallel to u, and $z = y - \hat{y}$ is perpendicular to u.

If u_1, \dots, u_k are an orthogonal basis for a subspace W , then the projection of y into W is

$$
\mathrm{proj}_W(y) = \sum \frac{y \cdot u_i}{u_i \cdot u_i} u_i
$$

and $y - \text{proj}_W(y)$ is perpendicular to W.

Orthonormal sets

The formulae above for projections are simplified for orthonormal sets because in that case $u_i \cdot u_i = 1$.

Let *U* be an $m \times n$ matrix. The columns of *U* are orthonormal if and only if $U^TU=I$ where I is the $n\times n$ identity matrix.

If U is $m \times n$ and has orthonormal columns and x and y are vectors in \mathbf{R}^n then:

1. $||Ux|| = ||x||$

$$
2. (Ux) \cdot (Uy) = x \cdot y
$$

3. $(Ux) \cdot (Uy) = 0$ if and only if $x \cdot y = 0$.