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Eigenvalues and Eigenvectors
If 𝐴 is a diagonal matrix:

𝐴 = [2 0
0 1/3]

then the linear transformation 𝑥 ↦ 𝐴𝑥 “stretches” along the
𝑥-axis and “shrinks” along the 𝑦-axis.
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Eigenvalues and Eigenvectors
If 𝐴 is upper triangular, say

𝐴 = [2 1
0 1/3]

then 𝐴 stretches along the 𝑥-axis by 2 as before. Less obviously, it
shrinks along the direction given by the vector (−3/5, 1).
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Eigenvalues and Eigenvectors

An eigenvector for a matrix 𝐴 is a vector 𝑣 which gets shrunk or
lengthened by 𝐴 by some factor 𝜆.

The factor 𝜆 is called the eigenvalue.

More formally, a vector 𝑣 is called an eigenvector for 𝐴 (with
eigenvalue 𝜆) if 𝑣 is not zero and

𝐴𝑣 = 𝜆𝑣.



Eigenvalues and Eigenvectors

In the example above, the vectors [1
0] and [−3/5

1 ] are
eigenvectors for the matrix

𝐴 = [2 1
0 1/3]

with eigenvalues 2 and 1/3 respectively.

[2 1
0 1/3] [1

0] = 2 [1
0]

[2 1
0 1/3] [−3/5

1 ] = [−1/5
1/3 ] = (1/3) [−3/5

1 ]



Triangular Matrices

If 𝐴 is (upper) triangular then the diagonal entries for 𝐴 are all
eigenvalues. If the diagonal entries are distinct, thenhere are 𝑛
linearly independent eigenvectors.



Eigenspaces

Suppose that 𝜆 is a constant. The vectors 𝑣 such that

𝐴𝑣 = 𝜆𝑣

form a subspace called the eigenspace for 𝜆.

This subspace is the nullspace of the matrix

𝐴 − 𝜆𝐼𝑛

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.



Independence of Eigenvectors
If 𝑣1, … , 𝑣𝑛 are eigenvectors for a matrix 𝐴 with eigenvalues
𝜆1, … , 𝜆𝑛, and all the 𝜆𝑖 are different, then the 𝑣𝑖 are linearly
independent. (Note that the 𝑣𝑖 are nonzero.)

To see this, suppose that

𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ 𝑐𝑛𝑣𝑛 = 0.

Then

𝐴(𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ 𝑐𝑛𝑣𝑛) = 𝑐1𝜆1𝑣1 + ⋯ 𝑐𝑛𝜆𝑛𝑣𝑛 = 0

Multiply the first relation by 𝜆1 and subtract. You get

𝑐2(𝜆2 − 𝜆1)𝑣2 + ⋯ + 𝑐𝑛(𝜆𝑛 − 𝜆1)𝑣𝑛 = 0.
Since the differences of the 𝜆𝑖 with 𝜆1 are not zero, we see that
𝑣2, … , 𝑣𝑛 are dependent.

By repeating this you can show that smaller and smaller collections
of the 𝑣𝑖 are dependent until you ultimately get 𝑣𝑛 = 0.



Characteristic Equation

Finding eigenvalues and eigenvectors of a matrix is a hard problem.
We can make the following observation.

Suppose 𝜆 is an eigenvalue of 𝐴 where 𝐴 is an 𝑛 × 𝑛 matrix.
Then there is a vector 𝑣 ≠ 0 so that 𝐴𝑣 = 𝜆𝑣. This means that
the matrix 𝐴 − 𝜆𝐼𝑛 is not invertible because 𝑣 is in its null space.

As a result, det(𝐴 − 𝜆𝐼𝑛 = 0.

Conversely, if det(𝐴 − 𝜆𝐼𝑛) = 0, then there is a vector 𝑣 in the
null space and that 𝑣 is an eigenvector.

It turns out that det(𝐴 − 𝜆𝐼𝑛) is a polynomial in 𝜆, so the
eigenvalues of 𝐴 are the roots of this polynomial.



Example

Let
𝐴 = [3 5

2 4] .

The determinant of 𝐴 − 𝜆 is

det([3 − 𝜆 5
2 4 − 𝜆]) = (3 − 𝜆)(4 − 𝜆) − 10

The polynomial on the right is

(3 − 𝜆)(4 − 𝜆) − 10 = 𝜆2 − 7𝜆 + 12 − 10 = 𝜆2 − 7𝜆 + 2.

Its roots are 7±
√

41
2 . These are the eigenvalues of 𝐴; they are

approximately 6.70156 and 0.29843.



Example continued

To find the eigenvectors, we have to compute the null space of
𝐴 − 𝜆𝐼 . This is no fun algebraically but with some work you find
that the eigenvectors are:

[−
√

41
4 − 1

4
1 ]

and
[−1

4 +
√

41
4

1 ]



Bigger matrices

The characteristic polynomial of an 𝑛 × 𝑛 matrix is of degree 𝑛.

Theorem: A polynomial of degree 𝑛 has 𝑛 complex roots
(counted correctly).

However, in practice one must use numerical methods to find roots
of a polynomial of degree 3 or higher.

If one know an eigenvalue 𝜆 exactly (which usually doesn’t
happen) then you can find the eigenvectors by computing the null
space of 𝐴 − 𝜆.



Example

Let

𝐴 = ⎡⎢
⎣

5 −8 1
0 0 7
0 0 −2

⎤⎥
⎦

Since 𝐴 is (lower) triangular, the eigenvalues are 5,0 and −2. The
vector

⎡⎢
⎣

1
0
0
⎤⎥
⎦

is the eigenvector with eigenvalue 5.



Example continued

To find the eigenvector with eigenvalue 0, we must solve

𝐴𝑥 = 0.

By one of our techniques this is

⎡⎢
⎣

−8
5
0

⎤⎥
⎦



Example continued

The final eigenvector is in the null space of 𝐴 + 2𝐼 :

𝐴 = ⎡⎢
⎣

7 −8 1
0 2 7
0 0 0

⎤⎥
⎦

This is

⎡⎢
⎣

−58/7
−7
2

⎤⎥
⎦



Similarity

Two (square) matrices 𝐴 and 𝐵 are similar if there is an invertible
matrix 𝑃 so that 𝐴 = 𝑃 𝐵𝑃 −1.

Similar matrices have the same eigenvalues because they have the
same characteristic polynomial.

det(𝑃𝐵𝑃 −1 − 𝜆𝐼) = det(𝑃 (𝐵 − 𝜆𝐼)𝑃 −1)
= det(𝑃 ) det(𝐵 − 𝜆𝐼) det(𝑃 −1)
= det(𝐵 − 𝜆𝐼)



Diagonalization

Diagonal matrices are the simplest to work with.

Definition: A square matrix is diagonalizable if there is an
invertible matrix 𝑃 so that 𝐴 = 𝑃 𝐷𝑃 −1 where 𝑃 diagonal. In
other words, 𝐴 is diagonalizable if it is similar to a diagonal matrix.

Theorem: An 𝑛 × 𝑛 matrix 𝐴 is diagonalizable if and only if it
has 𝑛 linearly independent eigenvectors.

In fact, if 𝐴 = 𝑃𝐷𝑃 −1, then the columns of 𝑃 are 𝑛 linearly
independent eigenvectors for 𝐴, and the diagonal entries of 𝐷 are
the corresponding eigenvalues. This is because in this situation,

𝐴𝑃 = 𝑃𝐷.



Example (from the text)

Let

𝐴 = ⎡⎢
⎣

1 3 3
−3 −5 −3
3 3 1

⎤⎥
⎦

1. The eigenvalues of 𝐴. The text tells us that the characteristic
polynomial of 𝐴 is −(𝜆 − 1)(𝜆 + 2)2 so the eigenvalues are 1
and −2.



Example continued

We need three linearly independent eigenvectors. So we need the
null spaces of 𝐴 − 𝐼 and 𝐴 + 2𝐼 . The book gives us:

𝑣1 = ⎡⎢
⎣

1
−1
1

⎤⎥
⎦

with eigenvalue 1. For the eigenvalue −2:

A+2I=⎡⎢
⎣

3 3 3
−3 −3 −3
3 3 3

⎤⎥
⎦

Reduced form is ⎡⎢
⎣

1 1 1
0 0 0
0 0 0

⎤⎥
⎦



Example continued

So null space of 𝐴 + 2𝐼 is two dimensional and spanned by

⎡⎢
⎣

1
−1
0

⎤⎥
⎦

, ⎡⎢
⎣

1
0

−1
⎤⎥
⎦

Therefore

𝑃 = ⎡⎢
⎣

1 1 1
−1 −1 0
1 0 −1

⎤⎥
⎦



Example continued

We can compute 𝐴𝑃 :

AP=⎡⎢
⎣

1 −2 −2
−1 2 0
1 0 2

⎤⎥
⎦

=PD

where

𝐷 = ⎡⎢
⎣

1 0 0
0 2 0
0 0 2

⎤⎥
⎦

So 𝐴 = 𝑃𝐷𝑃 −1 and 𝐴 is diagonalizable.



Matrix Powers

One application of diagonalization is that it makes it feasible to
understand 𝐴𝑛 when 𝐴 is a square matrix.

If 𝐴 is diagonalizable, then there is a diagonal matrix 𝐷 and a
matrix 𝑃 so that

𝐴 = 𝑃 𝐷𝑃 −1.

Then

𝐴𝑚 = (𝑃𝐷𝑃 −1)(𝑃𝐷𝑃 −1) ⋯ (𝑃𝐷𝑃 −1) = 𝑃𝐷𝑚𝑃 −1

and

𝐷𝑛 =
⎡
⎢⎢
⎣

𝜆𝑛
1 0 ⋯ 0
0 𝜆𝑛

2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ 𝜆𝑚

𝑛

⎤
⎥⎥
⎦



Not all matrices are diagonalizable

Let
𝐴 = [1 1

0 1] .

The only eigenvalue is 1. The null space of 𝐴 − 𝐼 is only one
dimensional, spanned by

[1
0]

So there’s no basis of eigenvectors, so 𝐴 can’t be diagonalized.



𝑛 distinct eigenvalues implies diagonalizable

If 𝐴 has 𝑛 different eigenvalues, then it has 𝑛 linearly independent
eigenvectors; thus there is a basis of eigenvectors.

Therefore in this case 𝐴 is diagonalizable.

But as we saw above, you can have repeated eigenvalues and still
be diagonalizable.



The diagonalization Theorem

Figure 1: Diagonalization Theorem



Fibonacci Numbers

The Fibonacci numbers are defined recursively by 𝐹0 = 0, 𝐹1 = 1,
and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 > 1.

Let
𝐴 = [0 1

1 1] = [𝐹0 𝐹1
𝐹1 𝐹2

] .

Then
𝐴2 = 𝐴𝐴 = [1 1

1 2] = [𝐹1 𝐹2
𝐹2 𝐹3

]



Fibonacci continued

Continuing we see that

𝐴𝑛 = 𝐴𝐴𝑛−1 = 𝐴 [𝐹𝑛−1 𝐹𝑛
𝐹𝑛 𝐹𝑛+1

] =

[ 𝐹𝑛 𝐹𝑛+1
𝐹𝑛−1 + 𝐹𝑛 𝐹𝑛 + 𝐹𝑛+1

] =

[ 𝐹𝑛 𝐹𝑛+1
𝐹𝑛+1 𝐹𝑛+2

] (1)

So:
𝐴𝑛 = [ 𝐹𝑛 𝐹𝑛+1

𝐹𝑛+1 𝐹𝑛+2
]



Computation of Fibonacci numbers
Let’s try to diagonalize the matrix 𝐴 = [0 1

1 1] and use this to
compute 𝐴𝑛.

The characteristic polynomial of 𝐴:

𝐹(𝜆) = det(𝐴 − 𝜆𝐼) = det [−𝜆 1
1 1 − 𝜆]

so 𝐹(𝜆) = 𝜆2 − 𝜆 − 1. This polynomial has two roots:

𝜆± = 1 ±
√

5
2 .

Therefore 𝐴 is diagonalizable. To compute 𝐴𝑛 we need to find 𝑃
so that

𝐴 = 𝑃 [𝜆+ 0
0 𝜆−

] 𝑃 −1



Computation of Fibonacci Numbers continued
The columns of the matrix 𝑃 are the eigenvectors of 𝐴. To find
these we must solve

𝐴 [𝑥
𝑦] = [𝜆±𝑥 𝜆±𝑦]

which translates into the equations

[ 𝑦
𝑥 + 𝑦] = [𝜆±𝑥

𝜆±𝑦]

Eigenvectors are determined only up to scaling so we can set
𝑥 = 1. Then 𝑦 = 𝜆±. So

𝑃 = [ 1 1
𝜆+ 𝜆−

]



Fibonacci numbers

Our final result is that

[𝐹𝑛−1 𝐹𝑛
𝐹𝑛 𝐹𝑛+1

] = 𝐴𝑛 = 1
𝜆− − 𝜆+

[ 1 1
𝜆+ 𝜆−

] [𝜆𝑛
+ 0
0 𝜆𝑛

−
] [ 𝜆− −1

−𝜆+ 1 ]

A little algebra gives:

𝐹𝑛 = (1+
√

5
2 )𝑛 − (1−

√
5

2 )𝑛
√

5



Consequences
Let 𝜙 be the “Golden ratio” 1+

√
5

2 .

1. 𝐹𝑛 is approximately 𝜙𝑛/
√

5.
2. 𝐹𝑛/𝐹𝑛−1 converges to 𝜙.

0 0.447 0
1 0.724 1
2 1.171 1
3 1.894 2
4 3.065 3
5 4.960 5
6 8.025 8
7 12.985 13
8 21.010 21
9 33.994 34
10 55.004 55
11 88.998 89


