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Eigenvalues and Eigenvectors
If A is a diagonal matrix:
2 0
A= [0 1/3]

then the linear transformation x + Ax “stretches” along the
x-axis and “shrinks” along the y-axis.
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Eigenvalues and Eigenvectors
If A is upper triangular, say

A= [(2) 1}3]

then A stretches along the z-axis by 2 as before. Less obviously, it
shrinks along the direction given by the vector (—3/5,1).
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Eigenvalues and Eigenvectors

An eigenvector for a matrix A is a vector v which gets shrunk or
lengthened by A by some factor A.

The factor A is called the eigenvalue.

More formally, a vector v is called an eigenvector for A (with
eigenvalue \) if v is not zero and

Av = .



Eigenvalues and Eigenvectors

In the example above, the vectors B} and [_?1/5} are

eigenvectors for the matrix

A= [g 1}3}

with eigenvalues 2 and 1/3 respectively.
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Triangular Matrices

If Ais (upper) triangular then the diagonal entries for A are all
eigenvalues. If the diagonal entries are distinct, thenhere are n
linearly independent eigenvectors.



Eigenspaces

Suppose that X is a constant. The vectors v such that
Av = v

form a subspace called the eigenspace for \.

This subspace is the nullspace of the matrix
A—)I,

where [, is the n X n identity matrix.



Independence of Eigenvectors

If vq,...,v,, are eigenvectors for a matrix A with eigenvalues
Als--s Ay, and all the A; are different, then the v; are linearly

9 n’'

independent. (Note that the v; are nonzero.)
To see this, suppose that

€101 + cyUy + -, v, = 0.

Then

A(eqvy + covg + -, v,,) = AUy + - A\, v, =0

Multiply the first relation by \; and subtract. You get
Ca(Ag — A vy + 4 ¢, (A, — Ap)v, = 0.

Since the differences of the A; with \; are not zero, we see that
Vg, ..., U,, are dependent.

By repeating this you can show that smaller and smaller collections
of the v, are dependent until you ultimately get v,, = 0.



Characteristic Equation

Finding eigenvalues and eigenvectors of a matrix is a hard problem.
We can make the following observation.

Suppose A is an eigenvalue of A where A is an n X n matrix.
Then there is a vector v # 0 so that Av = Av. This means that
the matrix A — AI,, is not invertible because v is in its null space.

As a result, det(A — \I,, = 0.

Conversely, if det(A — A\I,,) = 0, then there is a vector v in the
null space and that v is an eigenvector.

It turns out that det(A — AI,,) is a polynomial in A, so the
eigenvalues of A are the roots of this polynomial.



Example

Let
3 5
A [2 4] |
The determinant of A — X\ is

det(F;A 4:}):(3—»(4—»—10

The polynomial on the right is

(B=A)A—AN)—10=A2—TA+12—10=A2—TA +2.

Its roots are HT‘/H. These are the eigenvalues of A; they are
approximately 6.70156 and 0.29843.



Example continued

To find the eigenvectors, we have to compute the null space of
A — AI. This is no fun algebraically but with some work you find
that the eigenvectors are:
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Bigger matrices

The characteristic polynomial of an n x n matrix is of degree n.

Theorem: A polynomial of degree n has n complex roots
(counted correctly).

However, in practice one must use numerical methods to find roots
of a polynomial of degree 3 or higher.

If one know an eigenvalue A exactly (which usually doesn't

happen) then you can find the eigenvectors by computing the null
space of A — .



Example

Let
5 =8 1
A=10 0 7
0 0 =2

Since A is (lower) triangular, the eigenvalues are 5,0 and —2. The

vector
1
0
0

is the eigenvector with eigenvalue 5.



Example continued

To find the eigenvector with eigenvalue 0, we must solve

Ax = 0.

By one of our techniques this is

i



Example continued

The final eigenvector is in the null space of A + 21I:

7T =8 1
0 2 7

0 0 O

—58/7
—7
H

A=

This is



Similarity

Two (square) matrices A and B are similar if there is an invertible
matrix P so that A = PBP~L.

Similar matrices have the same eigenvalues because they have the
same characteristic polynomial.

det(PBP~' —XI) = det(P(B—A)P™1)
= det(P)det(B — \I)det(P!)
= det(B — M)



Diagonalization

Diagonal matrices are the simplest to work with.

Definition: A square matrix is diagonalizable if there is an
invertible matrix P so that A = PDP~! where P diagonal. In
other words, A is diagonalizable if it is similar to a diagonal matrix.

Theorem: An n x n matrix A is diagonalizable if and only if it
has n linearly independent eigenvectors.

In fact, if A= PDP~1 then the columns of P are n linearly
independent eigenvectors for A, and the diagonal entries of D are
the corresponding eigenvalues. This is because in this situation,

AP = PD.



Example (from the text)

Let

A=

1 3 3
-3 -5 -3
3 3 1

1. The eigenvalues of A. The text tells us that the characteristic

polynomial of A is —(A — 1)(\ + 2)? so the eigenvalues are 1
and —2.



Example continued

We need three linearly independent eigenvectors. So we need the
null spaces of A — 1 and A 4 21. The book gives us:

[

with eigenvalue 1. For the eigenvalue —2:

3 3 3
A+2l=|-3 -3 -3

3 3 3

1 1 1
Reduced formis [0 0 O
000



Example continued

So null space of A + 21 is two dimensional and spanned by

L)

Therefore




Example continued

We can compute AP:

1 -2 =2
AP=|—-1 2 0 |=PD
1 0 2

where

D =

1 00
0 20
0 0 2

So A= PDP~! and A is diagonalizable.



Matrix Powers

One application of diagonalization is that it makes it feasible to
understand A™ when A is a square matrix.

If A is diagonalizable, then there is a diagonal matrix D and a
matrix P so that

A= PDP 1.
Then
A™ = (PDP’l)(PDP’l) (PDP’l) = pDmp1
and
A0 0
n_ |0 Ay 0
b= Foor w0
0 0 - A™



Not all matrices are diagonalizable

11
!
The only eigenvalue is 1. The null space of A — I is only one
dimensional, spanned by
1
0

So there's no basis of eigenvectors, so A can't be diagonalized.



n distinct eigenvalues implies diagonalizable

If A has n different eigenvalues, then it has n linearly independent
eigenvectors; thus there is a basis of eigenvectors.

Therefore in this case A is diagonalizable.

But as we saw above, you can have repeated eigenvalues and still
be diagonalizable.



The diagonalization Theorem

Let A be an n x n matrix whose distinct eigenvalues are A1,.... 4.

a.

b.

For | < k < p. the dimension of the eigenspace for A is less than or equal to
the multiplicity of the eigenvalue A.

The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals n, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (i) the dimension of the
eigenspace for each A; equals the multiplicity of Ay.

If A is diagonalizable and B; is a basis for the eigenspace corresponding to A
for each k, then the total collection of vectors in the sets By. ..., B, forms an
eigenvector basis for R".

Figure 1: Diagonalization Theorem



Fibonacci Numbers

The Fibonacci numbers are defined recursively by Fiy =0, F}, =1,
and F,, = F, |+ F, 5 forn>1.

Let _
|0 1| |Fy, F|
=0 4= 18 A

5 (11 (R R
A_AA_L o| =

Then




Fibonacci continued

Continuing we see that

So:



Computation of Fibonacci numbers
1
Let's try to diagonalize the matrix A = [(1) 1] and use this to
compute A™.

The characteristic polynomial of A:

F(A) = det(A — AT) = det [‘f o A}

so F(\) = A2 — X\ — 1. This polynomial has two roots:

1++5
A=

Therefore A is diagonalizable. To compute A™ we need to find P

so that
_ Ay 0 —1
aer[y 9]



Computation of Fibonacci Numbers continued

The columns of the matrix P are the eigenvectors of A. To find
these we must solve

A m =[x Al

which translates into the equations
Y Ay
Tyl (A

Eigenvectors are determined only up to scaling so we can set
=1 Theny = A_. So



Fibonacci numbers

Our final result is that

|:Fn—1 Fn:|:An:

F,F

n n+1

A little algebra gives:




Consequences

Let ¢ be the “Golden ratio” 1*—2\/5

1. F, is approximately ¢™//5.
2. F,/F,_, converges to ¢.

0 0.447 0
1 0.724 1
2 1.171 1
3 1.894 2
4 3.065 3
5 4.960 5
6 8.025 8
7 12.985 13
8 21.010 21
9 33.994 34
10 55.004 55
11 88.998 89



