Rank and Change of Basis

Jeremy Teitelbaum

Let A be an $n \times m$ matrix.

The row rank of A is the dimension of the space spanned by the rows of A .

The column rank of \vec{A} is the dimension of the space spanned by the columns of A

The nullity of A is the dimension of the null space of A.

Perhaps surprisingly, the row and column ranks are the same.

To see this, put \vec{A} into row reduced echelon form. The dimension of the column space is the number of linearly independent columns, which is the number of columns containing a pivot.

The rows of \vec{A} containing a pivot form a basis for the row space of \overline{A}

Since the number of pivots is the same whether you look at rows or columns, the ranks are the same.

The Rank Theorem

Let A be an $n \times m$ matrix. Then:

 $rank(A) + nullity(A) = number of columns(A) = m$

This is because:

 \blacktriangleright the rank of A is the number of pivot columns \blacktriangleright the dimension of the null space is the dimension of the solution space to $Ax = 0$ which is the number of free variables in the row reduced form of \overline{A} .

These two numbers (pivots plus free variables) add up to the total number of columns.

If A is square of size $n \times n$, then:

- A is invertible if and only if $\text{rank}(A) = n$.
- A is invertible if and only if $\text{nullity}(A) = 0$.

These are restatements of earlier conditions; the first says that the columns of A are linearly independent, the second says that there are no free variables in the rref for A .

A few things to think about

- If V has dimension n , and H is a subspace of V of dimension n, then $H = V$.
- \blacktriangleright Suppose that A is a 4×7 matrix. Then the rank of A is at *most* 4 and the nullity of \vec{A} is at least 3.
- **Suppose that** A is a 7×4 matrix. Then the rank of A is at most 4. The nullity is between 0 and 4 .

A choice of a basis for a vector space gives a set of coordinates for that vector space.

If we have *two* bases, then we have two sets of coordinates. How are they related?

Suppose x_1, \dots, x_n and y_1, \dots, y_n are both bases of $V.$

We can write each x_i in terms of the y_j to get a matrix.

Change of basis

$$
\begin{array}{rcl} x_1 & = & a_{11}y_1 + a_{21}y_2 + \cdots + a_{n1}y_n \\ & \vdots \\ x_n & = & a_{1n}y_1 + a_{2n}y_2 + \cdots + a_{nn}y_n \end{array}
$$

If a vector $v = c_1 x_1 + \dots + c_n x_n$ then, written in terms of the y_i we have

$$
\begin{split} v = (c_1a_{11}+c_2a_{12}+\cdots+c_na_{1n})x_1+\cdots\\ + (c_1a_{n1}+\cdots+c_na_{nn})x_n \end{split}
$$

Change of basis continued

The coordinates $\left[v \right]_{x}$ of v in the x basis are computed from the coordinates $\left[v\right] _{y}$ in the y -basis as:

$$
[v]_x=A[v]_y\,
$$

where

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.
$$

<code>NOTE</code>: The columns of A are the coordinates $[x_i]_y$ of the $x\text{-}$ basis elements in terms of the y -basis.

Example

If e_1,e_2 are the standard basis for ${\bf R}^2$ and y_1,y_2 are the vectors $(1,1)$ and $(-1,1)$ then to convert from the y_1,y_2 basis to the standard basis we should make the matrix A whose columns are the y_1, y_2 in terms of the standard basis.

$$
A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}
$$

So if $v = ay_1 + by_2$ then

$$
A \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a - b \\ a + b \end{bmatrix}
$$

and so $v = (a - b)e_1 + (a + b)e_2$.

Example continued

To go backwards, suppose we have $v = ae_{1} + be_{2}$. The inverse of A is

$$
A^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}.
$$

Then

$$
\begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} (a+b)/2 \\ (b-a)/2 \end{bmatrix}
$$

To check:

$$
(a+b)/2\begin{bmatrix}1\\1\end{bmatrix}+(b-a)/2\begin{bmatrix}-1\\1\end{bmatrix}=\begin{bmatrix}a\\b\end{bmatrix}
$$

Notice also that the columns of A^{-1} are the standard basis written in the y_1, y_2 coordinates.