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Basis

A set of vectors in R𝑛 (or in any vector space 𝑉 ) is called a basis if
▶ it spans 𝑉
▶ it is linearly independent.

Examples: if 𝐴 is an invertible 𝑛 × 𝑛 matrix, its columns are
linearly independent and span R𝑛 and therefore are a basis for R𝑛.

The vectors 1, 𝑥, 𝑥2, … , 𝑥𝑛 span the polynomials of degree at most
𝑛 and are linearly indepenent.

The “standard vectors” 𝑒𝑖 for 𝑖 = 1, … , 𝑛 are a basis for R𝑛.



Subspace basis

The vectors (1, 3, 2) and (−1, −1, 0) are linearly indepedent and
span a subspace 𝐻 of R3.

Therefore they are a basis for 𝐻.



Every spanning set contains a basis

If a set 𝑆 of vectors 𝑣1, … , 𝑣𝑛 spans a subspace 𝐻, then a subset
of 𝑆 is a basis.

Proof: If the vectors are linearly indepenent, they are already a
basis.

If they are dependent, then one is a linear combination of the
others. Remove that one from 𝑆. The result still spans.

Continue removing dependent vectors until the remaining vectors
are independent, and you’ve found your basis.



A basis is a minimal spanning set

If 𝐻 is a subspace of 𝑉 , suppose you have a bunch of vectors in 𝐻.

Too many vectors makes them dependent. To few means they
can’t span. If they are a basis, there are enough to span, but not
to become dependent.



Basis for Nul(𝐴).

The null space of 𝐴 is spanned by the vectors with weights given
by the free variables in the row reduced from of 𝐴.

Those vectors are independent and therefore form a basis.



Basis for Col(𝐴).

Given vectors 𝑣1, … , 𝑣𝑘, make an 𝑚 × 𝑘 matrix with the 𝑣𝑖 as
columns.

To find a linear relation among the columns of 𝐴, we need to solve
𝐴𝑥 = 0.

But 𝐴𝑥 = 0 if and only if 𝐸𝐴𝑥 = 0 where 𝐸 is an elementary
matrix.

Put another way, row reduction doesn’t change the 𝑥 such that
𝐴𝑥 = 0.

So we can assume 𝐴 is in row reduced echelon form.



More on basis for Col(𝐴).

Once 𝐴 is in row reduced form, we see that:
▶ the columns corresponding to free variables are linear

combinations of the pivot columns
▶ the pivot columns are linearly independent.



Basis for Col(𝐴).

The columns of 𝐴 corresponding to the pivot columns in the row
reduced version of 𝐴 are a basis for the column space. (note that
these are not the columns of the reduced matrix).

So: a basis for the null space is made up of 𝑘 vectors where 𝑘 is
the number of free variables, and a basis for the column space is
made up of 𝑟 vectors where 𝑟 is the number of pivot columns.

Notice that 𝑘 + 𝑟 = 𝑛 where 𝑛 is the total number of columns of
𝐴.



Example

Suppose that

𝐴 = ⎡⎢
⎣

2 4 5 1
1 −3 −2 0
0 −2 −3 1

⎤⎥
⎦

The row reduced form of 𝐴 is

⎡⎢
⎣

1 0 0 1
0 1 0 1
0 0 1 −1

⎤⎥
⎦

Since the first three columns are pivot columns, the first three
columns of 𝐴 span the column space of 𝐴, and the last column
satisfies 𝑐4 = 𝑐1 + 𝑐2 − 𝑐3.



Example continued

The nullspace of 𝐴 is the solution to the homogeneous system, and
it is given by the equations

𝑥1 = −𝑥4
𝑥2 = −𝑥4
𝑥3 = 𝑥4

so the null space is spanned by

⎡
⎢⎢
⎣

−1
−1
1
1

⎤
⎥⎥
⎦



Null Space and Col Space

Figure 1: Null Space vs Col Space



Row space

The row space of a matrix is the span of its rows.

Row operations do not change the row space, so one can find a
basis for the row space of 𝐴 by putting 𝐴 in reduced form.

The rows with a pivot (that is, the nonzero rows) form a basis for
the row space.

This is because they are clearly linearly independent (and they span
by definition).



Linear Transformations

A linear transformation (or linear map) 𝑇 ∶ 𝑉 → 𝑊 , where 𝑉 and
𝑊 are vector spaces, is a function that satisfies
𝑇 (𝑢 + 𝑣) = 𝑇 (𝑢) + 𝑇 (𝑣) and 𝑇 (𝑐𝑣) = 𝑐𝑇 (𝑣) for all 𝑢, 𝑣 ∈ 𝑉 and
𝑐 ∈ R.

The kernel of a linear transformation is the set of vectors that map
to zero:

kernel(𝑇 ) = {𝑥 ∈ 𝑉 ∶ 𝑇 (𝑥) = 0}

The range or image of a linear transformation is the set of vectors
𝑤 ∈ 𝑊 such that there is a 𝑣 ∈ 𝑉 with 𝑇 (𝑣) = 𝑤.



Coordinate systems

Unique representation: Suppose that 𝐵 = {𝑏1, … , 𝑏𝑛} are a
basis for a vector space 𝑉 . Then any vector 𝑣 can be written in
exactly one way as a linear combination of the 𝑏𝑖:

𝑣 = 𝑐1𝑏1 + … + 𝑐𝑛𝑏𝑛

The coefficients 𝑐1, … , 𝑐𝑛 are called the coordinates of 𝑣 relative to
the basis 𝐵.

The vector

⎡⎢
⎣

𝑐1
⋮

𝑐𝑛

⎤⎥
⎦

is called the coordinate vector for 𝑣 relative to 𝐵.



Coordinates (example)

Suppose that
𝑒1 = [1

1] , 𝑒2 = [ 1
−1]

These form a basis of R2. If

𝑣 = 𝑐1𝑒1 + 𝑐2𝑒2

then
𝑣 = [𝑐1 + 𝑐2

𝑐1 − 𝑐2
]



Coordinates continued
Suppose

𝑣 = [2
1] .

What are the coordinates of 𝑣 in the 𝑒1, 𝑒2 basis?

Figure 2: Coords



Coordinates

In general, each choice of basis for a vector space gives a different
system of coordinates on that vector space.

Consider the polynomials with degree at most 2. This vector space
has basis 1, 𝑥, 𝑥2.

Consider the polynomials 𝑎(𝑥) = 𝑥(𝑥−1)
2 , 𝑏(𝑥) = 1 − 𝑥2, and

𝑐(𝑥) = 𝑥(𝑥+1)
2 .

They form another basis for the degree 2 polynomials.



Coordinates continued

If
𝑓 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2

then the coordinates of 𝑓 in terms of 𝑎, 𝑏, 𝑐 are 𝑓(−1), 𝑓(0), 𝑓(1):

𝑓(𝑥) = 𝑓(−1)𝑎(𝑥) + 𝑓(0)𝑏(𝑥) + 𝑓(1)𝑐(𝑥).



Coordinates

If 𝑏1, … , 𝑏𝑛 is a basis, let 𝐵 be the matrix whose columns are the
vectors 𝑏𝑖. Then if we write

𝑤 = 𝐵 ⎡⎢
⎣

𝑐1
⋮

𝑐𝑛

⎤⎥
⎦

we have 𝑤 = 𝑐1𝑏1 + ⋯ + 𝑐𝑛𝑏𝑛 and so the 𝑐𝑖 are the coordinates of
𝑤 relative to 𝐵. To find the 𝑐𝑖 for a given 𝑤, we need the inverse
of 𝐵:

𝐵−1𝑤 = ⎡⎢
⎣

𝑐1
⋮

𝑐𝑛

⎤⎥
⎦

.



Coordinates

In our 2-d example, we have

𝐵 = [1 1
1 −1]

so
𝐵−1 = 1

2 [1 1
1 −1]

In particular
𝐵−1 [2

1] = [3/2
1/2]

as above.


