Basis and Linear Independence

Jeremy Teitelbaum

Basis

A set of vectors in \mathbb{R}^n (or in any vector space V) is called a **basis** if

- it spans V
- \blacktriangleright it is linearly independent.

Examples: if A is an invertible $n \times n$ matrix, its columns are linearly independent and span \mathbb{R}^n and therefore are a basis for \mathbb{R}^n .

The vectors $1, x, x^2, \ldots, x^n$ span the polynomials of degree at most n and are linearly indepenent.

The "standard vectors" e_i for $i = 1, \ldots, n$ are a basis for \mathbf{R}^n .

Subspace basis

The vectors $(1, 3, 2)$ and $(-1, -1, 0)$ are linearly indepedent and span a subspace H of ${\mathbf R}^3.$

Therefore they are a basis for H .

Every spanning set contains a basis

If a set S of vectors v_1, \ldots, v_n spans a subspace H , then a subset of S is a basis.

Proof: If the vectors are linearly indepenent, they are already a basis.

If they are dependent, then one is a linear combination of the others. Remove that one from S . The result still spans.

Continue removing dependent vectors until the remaining vectors are independent, and you've found your basis.

A basis is a minimal spanning set

If H is a subspace of V, suppose you have a bunch of vectors in H . Too many vectors makes them dependent. To few means they can't span. If they are a basis, there are enough to span, but not to become dependent.

The null space of \tilde{A} is spanned by the vectors with weights given by the free variables in the row reduced from of A .

Those vectors are independent and therefore form a basis.

Basis for $Col(A)$.

Given vectors v_1, \dots, v_k , make an $m \times k$ matrix with the v_i as columns.

To find a linear relation among the columns of A , we need to solve $Ax = 0$.

But $Ax = 0$ if and only if $EAx = 0$ where E is an elementary matrix.

Put another way, row reduction doesn't change the x such that $Ax = 0$.

So we can assume \overline{A} is in row reduced echelon form.

More on basis for $Col(A)$.

Once A is in row reduced form, we see that:

- \blacktriangleright the columns corresponding to free variables are linear combinations of the pivot columns
- \blacktriangleright the pivot columns are linearly independent.

The **columns of** A corresponding to the pivot columns in the row reduced version of A are a basis for the column space. (note that these are *not* the columns of the reduced matrix).

So: a basis for the null space is made up of k vectors where k is the number of free variables, and a basis for the column space is made up of r vectors where r is the number of pivot columns.

Notice that $k + r = n$ where n is the total number of columns of \mathcal{A}_{\cdot}

Example

Suppose that

$$
A = \begin{bmatrix} 2 & 4 & 5 & 1 \\ 1 & -3 & -2 & 0 \\ 0 & -2 & -3 & 1 \end{bmatrix}
$$

The row reduced form of \overline{A} is

Since the first three columns are pivot columns, the first three columns of A span the column space of A , and the last column satisfies $c_4 = c_1 + c_2 - c_3$.

Example continued

The nullspace of A is the solution to the homogeneous system, and it is given by the equations

$$
\begin{array}{rcl}\nx_1 &=& -x_4 \\
x_2 &=& -x_4 \\
x_3 &=& x_4\n\end{array}
$$

so the null space is spanned by

$$
\begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}
$$

Null Space and Col Space

Contrast Between Nul A and Col A for an $m \times n$ Matrix A

Figure 1: Null Space vs Col Space

The *row space* of a matrix is the span of its rows.

Row operations do not change the row space, so one can find a basis for the row space of A by putting A in reduced form.

The rows with a pivot (that is, the nonzero rows) form a basis for the row space.

This is because they are clearly linearly independent (and they span by definition).

Linear Transformations

A linear transformation (or linear map) $T: V \to W$, where V and W are vector spaces, is a function that satisfies $T(u + v) = T(u) + T(v)$ and $T(cv) = cT(v)$ for all $u, v \in V$ and $c \in \mathbf{R}$.

The *kernel* of a linear transformation is the set of vectors that map to zero:

$$
kernel(T) = \{ x \in V : T(x) = 0 \}
$$

The *range* or *image* of a linear transformation is the set of vectors $w \in W$ such that there is a $v \in V$ with $T(v) = w$.

Coordinate systems

Unique representation: Suppose that $B = \{b_1, \ldots, b_n\}$ are a basis for a vector space V. Then any vector v can be written in exactly one way as a linear combination of the b_i :

$$
v = c_1 b_1 + \ldots + c_n b_n
$$

The coefficients $c_1, ..., c_n$ are called the *coordinates* of v relative to the basis B .

The vector

$$
\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$

is called the *coordinate vector* for v relative to B .

Coordinates (example)

Suppose that

$$
e_1=\begin{bmatrix}1\\1\end{bmatrix}, e_2=\begin{bmatrix}1\\-1\end{bmatrix}
$$

These form a basis of \mathbf{R}^2 . If

$$
v=c_1e_1+c_2e_2\\
$$

then

$$
v=\begin{bmatrix} c_1+c_2\\c_1-c_2 \end{bmatrix}
$$

Coordinates continued

Suppose

$$
v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.
$$

What are the coordinates of v in the e_1,e_2 basis?

Coordinates

In general, each choice of basis for a vector space gives a different system of coordinates on that vector space.

Consider the polynomials with degree at most 2. This vector space has basis $1, x, x^2$.

Consider the polynomials
$$
a(x) = \frac{x(x-1)}{2}
$$
, $b(x) = 1 - x^2$, and $c(x) = \frac{x(x+1)}{2}$.

They form another basis for the degree 2 polynomials.

Coordinates continued

If

$$
f = c_0 + c_1 x + c_2 x^2
$$

then the coordinates of f in terms of a, b, c are $f(-1), f(0), f(1)$:

$$
f(x) = f(-1)a(x) + f(0)b(x) + f(1)c(x).
$$

Coordinates

If b_1,\ldots,b_n is a basis, let B be the matrix whose columns are the vectors b_i . Then if we write

$$
w = B \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
$$

we have $w = c_1 b_1 + \dots + c_n b_n$ and so the c_i are the coordinates of w relative to $B.$ To *find* the c_i for a given w , we need the inverse of B :

$$
B^{-1}w = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.
$$

Coordinates

In our 2-d example, we have

$$
B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$

so

$$
B^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$

In particular

$$
B^{-1}\begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 3/2\\1/2 \end{bmatrix}
$$

as above.