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Basis

A set of vectors in R™ (or in any vector space V') is called a basis if

P it spans V
P> it is linearly independent.

Examples: if A is an invertible n x n matrix, its columns are
linearly independent and span R™ and therefore are a basis for R".

The vectors 1, x, 22, ..., 2™ span the polynomials of degree at most
n and are linearly indepenent.

The “standard vectors” e; for ¢ =1, ..., n are a basis for R".



Subspace basis

The vectors (1,3,2) and (—1,—1,0) are linearly indepedent and
span a subspace H of R?.

Therefore they are a basis for H.



Every spanning set contains a basis

If a set S of vectors vy, ..., v, spans a subspace H, then a subset
of S is a basis.

Proof: If the vectors are linearly indepenent, they are already a
basis.

If they are dependent, then one is a linear combination of the
others. Remove that one from S. The result still spans.

Continue removing dependent vectors until the remaining vectors
are independent, and you've found your basis.



A basis is a minimal spanning set

If H is a subspace of V, suppose you have a bunch of vectors in H.

Too many vectors makes them dependent. To few means they
can't span. If they are a basis, there are enough to span, but not
to become dependent.



Basis for Nul(A).

The null space of A is spanned by the vectors with weights given
by the free variables in the row reduced from of A.

Those vectors are independent and therefore form a basis.



Basis for Col(A).

Given vectors vy, ..., v, make an m x k matrix with the v, as
columns.

To find a linear relation among the columns of A, we need to solve
Az =0.

But Az = 0 if and only if EAx = 0 where E is an elementary
matrix.

Put another way, row reduction doesn’t change the x such that
Az =0.

So we can assume A is in row reduced echelon form.



More on basis for Col(A).

Once A is in row reduced form, we see that:

P> the columns corresponding to free variables are linear
combinations of the pivot columns

P> the pivot columns are linearly independent.



Basis for Col(A).

The columns of A corresponding to the pivot columns in the row
reduced version of A are a basis for the column space. (note that
these are not the columns of the reduced matrix).

So: a basis for the null space is made up of k vectors where k is
the number of free variables, and a basis for the column space is
made up of r vectors where 7 is the number of pivot columns.

Notice that k + r = n where n is the total number of columns of
A.



Example

Suppose that

A=

2 4 5 1
1 -3 -2 0
0 -2 -3 1

The row reduced form of A is

1 00 1
010 1
001 -1

Since the first three columns are pivot columns, the first three
columns of A span the column space of A, and the last column
satisfies ¢, = ¢; + ¢y — c3.



Example continued

The nullspace of A is the solution to the homogeneous system, and
it is given by the equations

.’,El - —{L’4
$2 - _x4
T3 = Iy

so the null space is spanned by

—1
—1
1
1



Null Space and Col Space

Contrast Between Nul A and Col A for an m

x n Matrix A

Nul A

Col A

1. Nul A is a subspace of R".

. Nul A is implicitly defined; that is, you are
given only a condition (Ax = 0) that vec-
tors in Nul A must satisfy.

. It takes time to find vectors in Nul A. Row
operations on [ A 0] are required.

. There is no obvious relation between Nul A
and the entries in A.

. A typical vector v in Nul A has the property
that Av = 0.

. Given a specific vector v, it is easy to tell if
v is in Nul A. Just compute Av.

. Nul A = {0} if and only if the equation
Ax = 0 has only the trivial solution.

. Nul A = {0} if and only if the linear trans-
formation x > Ax is one-to-one.
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. Col A4 is a subspace of R™.
. Col A is explicitly defined; that is, you are

told how to build vectors in Col A.

. It is easy to find vectors in Col A. The

columns of A are displayed; others are
formed from them.

. There is an obvious relation between Col A

and the entries in A, since each column of
Aisin Col A.

. A typical vector v in Col A has the property

that the equation Ax = v is consistent.

. Given a specific vector v, it may take time

to tell if v is in Col A. Row operations on
[ A v] are required.

. Col A = R™ if and only if the equation

Ax = b has a solution for every b in R”".

. Col A = R if and only if the linear trans-

formation x > Ax maps R" onto R™.

Figure 1: Null Space vs Col Space



Row space

The row space of a matrix is the span of its rows.

Row operations do not change the row space, so one can find a
basis for the row space of A by putting A in reduced form.

The rows with a pivot (that is, the nonzero rows) form a basis for
the row space.

This is because they are clearly linearly independent (and they span
by definition).



Linear Transformations

A linear transformation (or linear map) 7" : V. — W, where V" and
W are vector spaces, is a function that satisfies
T(u+v)=T(u)+T(v) and T'(cv) = ¢T'(v) for all u,v € V and
c € R.

The kernel of a linear transformation is the set of vectors that map
to zero:

kernel(T) = {x € V : T'(xz) = 0}

The range or image of a linear transformation is the set of vectors
w € W such that there is a v € V with T'(v) = w.



Coordinate systems

Unique representation: Suppose that B = {b;,...,b,} are a
basis for a vector space V. Then any vector v can be written in
exactly one way as a linear combination of the b;:

v=cb +..4+¢c,b,

The coefficients ¢y, ..., c,, are called the coordinates of v relative to
the basis B.
The vector

€1

cn

is called the coordinate vector for v relative to B.



Coordinates (example)

Suppose that

1 1
-l

These form a basis of R2. If

V= C1€1 + Cy€y

¢, +c
v= |1 2
€1 —C

then



Coordinates continued
Suppose
2
v = 1 .

What are the coordinates of v in the e, e5 basis?

o - (2,1) wm wsal

cponds”
1 0)

oxh =2

amb =\
a7l
vr'h!



Coordinates

In general, each choice of basis for a vector space gives a different
system of coordinates on that vector space.

Consider the polynomials with degree at most 2. This vector space

has basis 1, z, z2.

Consider the polynomials a(x) = x(x;l), b(x) =1— 22, and
c(z) = 73:(3:;1)'

They form another basis for the degree 2 polynomials.



Coordinates continued

f=cy+cyx+ cyx?

then the coordinates of f in terms of a,b,c are f(—1), f(0), f(1):

f(@) = f(=Da(x) + f(0)b(z) + f(1)c().



Coordinates

If by,...,b, is a basis, let B be the matrix whose columns are the

vectors b;. Then if we write

we have w = ¢;b; + -+ ¢, b,, and so the ¢; are the coordinates of

w relative to B. To find the ¢; for a given w, we need the inverse
of B:



Coordinates

In our 2-d example, we have

SO

In particular

as above.



