1.1-1.2 Systems of Linear Equations

Jeremy Teitelbaum

Linear Equations

A *linear equation* in variables x_1, \dots, x_n with constants a_1, \dots, a_n and b is an equation where the variables all appear to the first power (only).

$$
a_1x_1+a_2x_2+\cdots a_nx_n=b
$$

If $n = 2$, the solution set to an equation

$$
a_1x_1 + a_2x_2 = b
$$

is a line (hence the name linear). In higher dimensions, the solution set is a "hyperplane".

Systems

A system of linear equations is a collection

$$
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2
$$

\n
$$
\vdots
$$

\n
$$
a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = b_k
$$

Note the indexing:

- \blacktriangleright there are k equations in n unknowns, so there are $k \times n$ coefficients a_{ij}
- \blacktriangleright there are k constants b_j .

Solutions

Given two equations in two unknowns there are three possibilities:

- \blacktriangleright the two equations have infinitely many common solutions.
- \blacktriangleright the two equations have one common solution.
- \blacktriangleright the two equations have no common solutions.

Infinitely many common solutions

One common solution

One solution - lines cross

No common solutions

No solutions - lines parallel

What can we say about systems with more equations and more unknowns?

Spoiler alert: the same three possibilities hold:

 \triangleright no solutions

- \triangleright one solution
- ▶ infinitely many solutions

Matrix Equation

We can simplify the writing by replacing this information:

$$
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2
$$

\n
$$
\vdots
$$

\n
$$
a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = b_k
$$

with a "matrix" consisting of just the coefficients.

$$
\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} & b_k \end{pmatrix}
$$

Augmented and Coefficient Matrices

This is called the *augmented matrix* of the system of equations. If you drop the final "b" column then it's called the coefficient matrix.

Row operations

Given a system of equations, you can:

- 1. Rearrange the equations into any order.
- 2. Replace any equation in the system by a multiple by a non-zero constant.
- 3. Replace any equation e by $e + f$ where f is another equation in the system.

All of these operations are reversible and so the solutions of the transformed system are the same as the original.

These are called *elementary row operations*.

The algorithm for solving a system involves using these row operations to reduce the system to one where the solutions are easy to see.

Row Reduction 1

 $\begin{bmatrix} 0. & 1. & 4. & -4. \end{bmatrix}$ $[1. 3. 3. -2.]$ [3. 7. 5. 6.]]

Swap row 3 and row 1

[[3. 7. 5. 6.] $[1. 3. 3. -2.]$ $[0. 1. 4. -4.]]$

 $Row[2]$ -> $-3*Row[2]+Row[1]$

Row Reduction Continued

```
[[ 3. 7. 5. 6.]
 \lceil 0. -2. -4. 12. \rceil\begin{bmatrix} 0. & 1. & 4. & -4.1 \end{bmatrix}Row[3] \rightarrow 2*Row[3]+Row[2][[ 3. 7. 5. 6.]
 \lceil 0. -2. -4. 12. \rceil[ 0. 0. 4. 4.]]
```
Divide rows by leading coeffs

 $[[1. 2.33333333 1.66666667 2.]$ $[-0.$ 1. 2. $-6.$] $[0. 0. 1. 1. 1]$

Row Reduction 1 continued

 \blacktriangleright The reduced matrix tells us that $x_3 = 1$.

▶ Then from the second row we get: $x_2 + 2x_3 = -6$, so $x_2 + 2 = -6$ and $x_2 = -8$.

▶ Then from the first row we get $x_1 + (7/3)x_2 + (5/3)x_3 = 2$, so $x_1 - 56/3 + 5/3 = 2$ and $x_1 = 19$.

We should check.

$$
x_2 + 4x_3 = -8 + 4 = -4
$$

$$
x_1 + 3x_2 + 3x_3 = 19 - 24 + 3 = -2
$$

$$
3x_1 + 7x_2 + 5x_3 = 57 - 56 + 5 = 6
$$

Row Reduction 2

```
[0 \t1 -4 \t8][2 -3 2 1][ 4 -8 12 1]]
```
Row[2]->-2*Row[2]+Row[3]

```
[0 \ 1 -4 \ 8][0 -2 8 -1][ 4 -8 12 1]]
```
Swap Row 3 and Row 1

Row Reduction 2 continued

```
\lceil \lceil 4 -8 12 1]
 [0 -2 8 -1][0 \ 1 \ -4 \ 8]]
```
 $Row[3]-2*Row[3]+Row[2]$

```
[[ 4 -8 12 1]
[0 -2 8 -1][ 0 0 0 15]]
```
This system has no solutions, it is inconsistent - the last row would mean $0=15$

Echelon form

A matrix is in *echelon form* (row echelon form) if:

- ▶ The zero rows are at the bottom of the matrix
- ▶ Each leading non-zero entry in a row is to the right of any leading entry above it.
- \blacktriangleright The entries below a leading entry are zero.

$$
\begin{pmatrix} \square & * & \cdots & * & * & \cdots & * \\ 0 & \square & * \cdots & * & * & \cdots & * \\ 0 & 0 & 0 & \square & * & \cdots & * \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 0 \end{pmatrix}
$$

Here \Box is non-zero, and $*$ is anything.

Solutions from echelon form

$$
\begin{array}{ccc}\nx_1 & +5x_3 & +x_4 & = 11 \\
2x_2 & -x_4 & = 5 \\
x_3 & +x_4 & = 1\n\end{array}
$$

This yields:

$$
x_3 = 1 - x_4
$$

\n
$$
x_2 = 5/2 + x_4/2
$$

\n
$$
x_1 = 11 - 5(1 - x_4) + x_4 = 6 + 6x_4
$$

There are infinitely many solutions; x_4 can be anything and the others follow.

A matrix is in reduced echelon form if it is in echelon form and:

- \blacktriangleright the leading entries are 1
- \blacktriangleright each leading entry is the only nonzero entry in its column.

Theorem: Given a $k \times n$ matrix, there is a sequence of row operations that will change it into a matrix in reduced row echelon form. A matrix has only *one* reduced row echelon form.

Reduced echelon form continued

Remember our echelon matrix from before

 $[[1. 2.33333333 1.66666667 2.]$ $[-0, 1, 2, -6, 1]$ $[0. 0. 1. 1. 1.]$

We can reduce this

 $X[1]->X[1]-7/3X[2]$

Reduced Echelon Form continued

```
[[ 1. 0. -3. 16.]
 [-0. 1. 2. -6.][ 0. 0. 1. 1.]]
X[1]->X[1]+3X[3]\begin{bmatrix} 1 & 0 & 0 & 19 \end{bmatrix}[-0, 1, 2, -6][ 0. 0. 1. 1.]]
X[2]->X[2]-2*X[3][[ 1. 0. 0. 19.]
 [-0. 1. 0. -8.][0. 0. 1. 1.]
```
Notice that this "solves" the system explicitly (look at the last column)

Row reduction algorithm (forward pass)

Forward Pass:

- 1. Find the leftmost column with a nonzero entry. Swap rows to make the top entry in that column nonzero. (This nonzero entry in the top leftmost position is called a pivot).
- 2. Use row operations to zero out all of the entries below the pivot.
- 3. Look at the submatrix below the pivot. Carry out steps 1 and 2 on this submatrix. Continue moving down and to the right, applying steps 1 and 2 to smaller and smaller submatrices until you reach the last row.

Row reduction algorithm (backward pass)

- 4. Now start at the last row which a nonzero entry. Scale that row so its left most nonzero entry is 1.
- 5. Use row operations to make all the entries in the column above this 1 equal to zero.
- 6. Now move up and to the left, scaling the leading entry to 1 and eliminating non-zero entries above, until you reach the upper left corner.

Extracting solutions

Let M be the augmented matrix of a linear system. Put M in reduced row echelon form. Then:

- 0. If there is a row with a non-zero final entry but zeros before that, the system is inconsistent. In other words, if the last column is a pivot column, the system is inconsistent. Otherwise:
- 1. Columns with a nonzero pivot correspond to *basic variables*.
- 2. Columns without a pivot correspond to *free variables*.

The free variables can take any value, and the basic variables can be computed for any choice of the free variables.

Classification

- ▶ The system has no solutions if the last column of the augmented matrix is a pivot column.
- ▶ The system has infinitely many solutions if it is consistent and has at least one free variable.
- \blacktriangleright The system has a unique solution if every column (except the last one) is a pivot column, and therefore it has no free variables.

Example

Matrix is 1 2 3 4 4 5 6 7 6 7 8 9 Reduced matrix is $1 \t 0 \t -1 \t -2$ 0 1 2 3 0 0 0 0 Pivot columns are (1, 2) Column 3 is a free variable

Solutions

$$
\begin{aligned} x_2&=3-2x_3\\ x_1&=-2+x_3 \end{aligned}
$$

Example

Matrix is 1 3 5 7 3 5 7 9 5 7 9 1 Reduced matrix is 1 0 -1 0 $0 \t1 \t2 \t0$ 0 0 0 1 Pivot columns are (1, 2) Column 3 is a free variable

This is an inconsistent system