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Approaches to clustering



k-means
In general, pick k random points in the space. Take the points in
the dataset closest to each point and compute their center of mass.
Replace the k points by these centers of mass and repeat the
process.

Figure 1: Example of K-means Result



Hierarchical clustering
Define a distance measure between sets of points in the space. Start
with every cluster being a single point. Choose the closest clusters
and combine them. Repeat until there is only one cluster. The
sequence of joinings gives a tree that describes the hierarchical
clustering.

Figure 2: Clustering reveals structure



Graph communities

Louvain clustering: An iterative method that tries to maximize a
clustering measure called ‘modularity.’ If the nodes of a graph are
partitioned into clusters, then the modularity is essentially the ratio
of the edges that lie entirely within the clusters over the expected
number of such edges if the edges of the graph were rearranged at
random in a certain sense. Louvain clustering is a type of
hierarchical clustering that iteratively increases this measure.

Data can be converted to a graph by connected points to their
nearest neighbors, according to some metric.



Mixtures

One assumes that the data arose from a “mixture distribution”
which is a sum of probability distributions. For example, one could
assume that points in the plane arose from a sum of n gaussian
distributions. A maximum likelihood computation will give you the
means and variances of these distributions; and then each point can
be assigned to the distribution that was most likely to have
produced it.



Dimensionality Reduction

Clustering algorithms typically begin with a dimensionality reduction.

I Principal component analysis Projects the data into lower
dimensional subspace spanned by the directions where the
variation is maximal.

I Spectral embedding For a graph, projects the nodes into
coordinates given by most significant eigenvalues of the
laplacian

I non-linear, or manifold methods such as tSNE tSNE converts
the data into a graph, and the graph into a probability
distribution and then tries to model that distribution in
low-dimensional space with the least distortion.



tSNE in action



Example

As a demonstration of the 10x genomics single cell sequencing
platform, 1.3M brain cells were sequenced from two mice. The
output of the experiment is a matrix with 1 row for each cell and 1
column for each gene; the entries count the number of RNA
molecules transcribed from that gene in that cell. There are about
30K genes. So we have a matrix of integers that is 1.3M by 30k
entries.

The RNA expression data characterizes the operational state of the
cell.



Clustering result

Figure 3: tSNE dimension reduction applied to RNA seq data

I Data is treated as a graph based on notion of nearest neighbors
I tSNE algorithm creates a two-dimensional representation
I colors show “Louvain communities” in the graph

tSNE puts Louvain Communities near each other.

Question: Why does tSNE respect the Louvain communities in this
way?



Another example

Figure 4: Nodes are football teams, edges are games, yellow=‘Big Ten’

graphE algorithm uses probability that a node A occurs in a short
random walk starting at B to create distances.

tSNE embedding in dimension 2 identifies conferences.

Figure 5: Dots are teams, colors are conferences, tSNE embedding

Clusters are visible but need another technique to formally identify
them.



Finite metric spaces
There are theoretical results on clustering obtained by viewing the
problem as one of finite metric spaces.

I Kleinberg’s theorem: There is no clustering algorithm that is
symmetric, scale invariant, and consistent.

In particular, Take a finite set X . A similarity function is a
function d : X × X → R that is symmetric and zero only on
the diagonal.

A clustering method F is a function from the set of such D to
the partitions of X . We say that F is scale invariant if F (αd)
gives the same cluster as F for any α > 0; we say that F is
rich if it is surjective onto the set of partitions; and we say that
F is consistent if it agrees on two distance functions d and d ′

whenever d ′ is smaller than d for two points in the same
cluster, and d ′ is bigger than d for two points in different
clusters. There is no clustering function that is scale invariant,
rich, and consistent.

I Carlsson-Memoli: Hierarchical clustering of a particularly simple
form has good theoretical properties although it is frowned on
in practice. Uses ideas of Gromov on the distances between
metric spaces.



Some thoughts on theoretical questions

What is a cluster? It would be interesting just to survey the
different definitions that are “out there.” Suppose that a “cluster”
(whatever that is) exists after some kind of dimensionality reduction.
Can one say something definitive about the original data?

What kind of definitive theoretical results about these various
approaches exist?

Can one compare the “clusters” that arise from different methods in
some way? What’s the right way to evaluate a clustering method?
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