
The ground truth about metadata and
community detection in networks

Leto Peel, Daniel B. Larremore, Aaron Clauset

Jason Cory Brunson

Center for Quantitative Medicine, UConn Health

November 12, 2019



Abstract

1 Metadata are not ground truth
2 Community detection is not uniquely solvable
3 Metadata–community interactions can be measured



Evaluating community detection methods

Community detection
• Analog of clustering for network (relational) data
• Diverse applications
• Diverse meanings of “community”

Ground truth
• Useful (vital?) to evaluate & compare methods
• Known for generative simulation-based models
• Epistemically questionable for empirical models

Metadata
• Categories or classifications

• sex, ethnicity, ZIP, primary diagnosis
• Often substituted for ground truth
• Simulations may not reflect real-world processes



The trouble with metadata and community detection

Dilemma
• High metadata–community correlation indicates that

metadata are important to network generation
• Low correlation may arise from

i. irrelevance of metadata to structure
ii. indirect relationship between metadata and structure
iii. absence of community structure
iv. failure of community detection method

Possible implications
• Over-reporting of poor performance by community detection

methods
• Under-reporting of patterns uncorrelated with metadata



Illustration: Zachary’s Karate Club
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 FIGURE 1

 Social Network Model of Relationships in the Karate Club
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 This is the graphic representation of the social relationships among the 34 indi-
 viduals in the karate club. A line is drawn between two points when the two
 individuals being represented consistently interacted in contexts outside those of
 karate classes, workouts, and club meetings. Each such line drawn is referred to as
 an edge.

 two individuals consistently were observed to interact outside the
 normal activities of the club (karate classes and club meetings). That is,
 an edge is drawn if the individuals could be said to be friends outside
 the club activities.This graph is represented as a matrix in Figure 2. All
 the edges in Figure 1 are nondirectional (they represent interaction in both
 directions), and the graph is said to be symmetrical. It is also possible to
 draw edges that are directed (representing one-way relationships); such
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Epistemological
status
• Heterogeneous,

weighted links
• university classes
• karate workouts
• rathskeller
• nearby bar
• tournaments

• Multiple metadata
attributes
• political leaning
• faction joined

• Erroneous datum



Illustration: Zachary’s Karate Club

Specificity / well-definedness
• Embed the space of partitions in R2

• Graph log-likelihoods under the stochastic blockmodel

Funke & Becker • 2019 • PLOS ONE



Illustration: Zachary’s Karate Club

reasons: (i) These particular metadata are irrelevant to the structure of
the network, (ii) the detected communities and the metadata capture
different aspects of the network’s structure, (iii) the network contains
no communities as in a simple random graph (7) or a network that is
sufficiently sparse that its communities are not detectable (8), or (iv) the
community detection algorithm performed poorly.

In the above, we refer to the observed network and metadata and
note that noise in either could lead to one of the reasons above. For in-
stance, measurement error of the network structure may make our ob-
servations unreliable and, in extreme cases, can obscure the community
structure entirely, resulting in case (iii). It is also possible that human
errors are introducedwhen handling the data, exemplified by thewidely
used American college football network (9) of teams that played each
other in one season, whose associated metadata representing each
team’s conference assignment were collected during a different season
(10). Large errors in the metadata can render them irrelevant to the
network [case (i)].

Most work on community detection assumes that failure to find
communities that correlate with metadata implies case (iv), algorithm
failure, although some critical work has focused on case (iii), difficult or
impossible to recover communities. The lack of consideration for cases
(i) and (ii) suggests the possibility for selection bias in the published
literature in this area [a point recently suggested by Hric et al. (11)].
Recent critiques of the general utility of community detection in net-
works (11–13) can be viewed as a side effect of confusion about the role
of metadata in evaluating algorithm results. For these reasons, using
metadata to assess the performance of community detection algorithms
can lead to errors of interpretation, false comparisons betweenmethods,
and oversights of alternative patterns and explanations, including those
that do not correlate with the known metadata.

For example, Zachary’s Karate Club (14) is a small real-world
network with compelling metadata frequently used to demonstrate
community detection algorithms. The network represents the observed
social interactions of 34 members of a karate club. At the time of study,
the club fell into a political dispute and split into two factions. These
faction labels are the metadata commonly used as ground truth com-
munities in evaluating community detection methods. However, it is
worth noting at this point that Zachary’s original network andmetadata
differ from those commonly used for community detection (9). Links in
the original network were by the different types of social interaction
that Zachary observed. Zachary also recorded twometadata attributes:
the political leaning of each of the members (strong, weak, or neutral
support for one of the factions) and the faction they ultimately joined
after the split. However, the community detection literature uses only
themetadata representing the faction each node joined, oftenwith one
of the nodes mislabeled. This node (“Person number 9”) supported
the president during the dispute but joined the instructor’s faction
because joining the president’s faction would have involved retrain-
ing as a novice when he was only 2 weeks away from taking his black
belt exam.

The division of the Karate Club nodes into factions is not the only
scientifically reasonable way to partition the network. Figure 1 shows
the log-likelihood landscape for a large number of two-group partitions
(embedded in two dimensions for visualization) of the Karate Club, un-
der the stochastic blockmodel (SBM) for community detection (15, 16).
Partitions that are similar to each other are embedded nearby in the
horizontal coordinates, meaning that the two broad peaks in the land-
scape represent two distinct sets of high-likelihood partitions: one
centered around the faction division and one that divides the network

into leaders and followers. Other common approaches to community
detection (9, 17) suggest that the best divisions of this network have
more than two communities (10, 18). The multiplicity and diversity
of good partitions illustrate the ambiguous status of the faction meta-
data as a desirable target.

The Karate Club network is among many examples for which
standard community detectionmethods return communities that either
subdivide the metadata partition (19) or do not correlate with the meta-
data at all (20, 21).More generally, most real-world networks havemany
good partitions, and there are many plausible ways to sort all partitions
to find good ones, sometimes leading to a large number of reasonable
results. Moreover, there is no consensus on which method to use on
which type of network (21, 22).

In what follows, we explore both the theoretical origins of these pro-
blems and the practical means to address the confounding cases de-
scribed above. To do so, we make use of a generative model perspective
of community detection. In this perspective, we describe the relation-
ship between community assignments C and graphs G via a joint dis-
tribution P(C,G) over all possible community assignments and graphs
that wemay observe.We take this perspective because it provides a pre-
cise and interpretable description of the relationship between commu-
nities andnetwork structure. Although generativemodels, like the SBM,
describe the relationship between networks and communities directly
via a mathematically explicit expression for P(C,G), other methods for
community detection nevertheless maintain an implicit relationship
between network structure and community assignment. Hence, the
theorems we present, as well as their implications, are more generally
applicable across all methods of community detection.

In the next section,we present rigorous theoretical results with direct
implications for cases (i) and (iv), whereas the remaining sections intro-
duce two statistical methods for addressing cases (i) and (ii). These con-
tributions do not address case (iii), when there is no structure to be
found, which has been previously explored by other authors, for exam-
ple, for the SBM (8, 23–27) and modularity (28, 29).
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Fig. 1. The stochastic blockmodel log-likelihood surface for bipartitions of the
KarateClubnetwork (14). Thehigh-dimensional spaceof all possiblebipartitionsof the
network has been projected onto the x, y plane (using a method described in Supple-
mentary TextD.4) such that points representing similar partitions are closer together. The
surface shows two distinct peaks that represent scientifically reasonable partitions. The
lower peak corresponds to the social grouppartitiongivenby themetadata—often treated
as ground truth—whereas the higher peak corresponds to a leader-follower partition.
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The ground truth community detection problem

• G a network
• generated by a process g
• from a ground truth partition T

• C be a partition of G
• obtained by a community detection method f

• d be a measure of distance between partitions of G

Inverse Problem

f ∗(G) = argmin
f

d (T , f (G))

Universal Solution

∃f ∗, ∀{g, T }, argmin
f

d (T , f (g(T )))



Ground-truth community detection is an ill-posed
inverse problem

Well-posedness
i. A solution exists
ii. The solution is unique
iii. The solution changes continuously with initial conditions

Theorem
For a fixed network G, the solution to the ground truth community
detection problem is not unique.

Proof.
Any graph G can be produced with positive probability by both
• T = coarsest partition; g = Erdős-Rényi model
• T = finest partition; g = deterministic model that recovers G
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No Free Lunch for community detection

NFL for machine learning
For supervised learning problems, the expected misclassification
rate across all possible data sets is independent of the algorithm.

NFL for community detection
1 Translate the community detection problem into the

Extended Bayesian Framework (EBF)
2 Choose a suitable loss function ` with total error L(`)
3 Prove NFL:

∀f ,
∑
g,T

`(T , f (g(T ))) = L(`)



Community detection in the EBF

Supervised EBF (classification)
Posit:
• a countable input space X , |X | = n
• a countable output space Y , |Y | = r
• the density function σX = P(x | σ)
• the conditional distribution γ = pY | X
• a training set d of samples (xi , yi ), Yi ∼ γ(Xi )

Compute:
• for each test case x ∈ X , a hypothesis h ∈ Y
• model (algorithm) P(h | d , x) combining priors and data

Unsupervised EBF (clustering and community
detection)
• d = ∅
• P(h) encodes priors (assumptions about γ) only



Community detection in the EBF

Supervised EBF (classification)
Posit:
• a countable input space X , |X | = n
• a countable output space Y , |Y | = r
• the density function σX = P(x | σ)
• the conditional distribution γ = pY | X
• a training set d of samples (xi , yi ), Yi ∼ γ(Xi )

Compute:
• for each test case x ∈ X , a hypothesis h ∈ Y
• model (algorithm) P(h | d , x) combining priors and data

Unsupervised EBF (clustering and community
detection)
• d = ∅
• P(h) encodes priors (assumptions about γ) only



Loss functions

Supervised EBF (classification)
• error random variable C ∼ P(c | h, γ,d)
• expected error E(C | h, γ, d)
• typical loss functions `

• misclassification rate
• normalized mutual information

Unsupervised EBF (clustering and community
detection)
Group labels:
• matter to classification problems
• don’t matter to clustering problems
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Normalized mutual information
• N objects
• partition u ∈ P(N) of objects into Ku groups
• proportional sizes pi = |ui |/N

Entropy of u:

H(u) = −
Ku∑
i=1

pi log(pi )

Mutual information between u, v :

I(u, v ) =
Ku∑
i=1

Kv∑
j=1

pij log
( pij

pipj

)

Normalized mutual information between u, v :

NMI(u, v ) =
I(u, v )√

H(u)H(v )



Loss functions and a priori superiority

Typical loss functions imply a
priori superiority of some
algorithms based on labeling
schemes

1 2 3 4 5

adjusted mutual information between each pair of partitions are presented in ables S8 and S9,
respectively.

objects into Ku groups, the probability that an object chosen uniformly at random falls into

group ui is pi = |ui|/N , i = 1 . . . Ku. The entropy associate with a partition u is then the

entropy of its corresponding distribution p

H(u) = �
KuX

i=1

pi log (pi)

When comparing two partitions u and v of the same set of objects, each object belongs to some

group ui in the first partitions and some other group vj , j = 1 . . . Kv in the second partition,

with the corresponding probability pij . The mutual information between the two partitions is

therefore

I(u, v) =
KuX

i=1

KvX

j=1

pij log

✓
pij

pipj

◆

which can be normalized to define normalized mutual information as

NMI(u, v) =
I(u, v)p
H(u)H(v)

(28)

Other normalizing factors in the denominator are possible, including 1
2
[H(u) + H(v)] and

max{H(u), H(v)}; see (52). NMI maps partitions to the unit interval, with 0 indicating that

two partitions are uncorrelated and 1 indicating that they are identical (even if the groups labels

differ).

fig.�S6.� The five distinct ways to partition three nodes. Normalized mutual information and
t

NMI on P(3): S6 .
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one partition is a priori closer to all others. This key property of AMI, called homogeneity, is

proved in a Lemma in the next section.

C.2.3 Lemma and theorems

We now prove a lemma about adjusted mutual information, and then formally state the NFL

theorem for supervised learning and prove the no free lunch theorem for community detection.

Lemma 1: Adjusted mutual information (AMI) is a homogenous loss function

over the interior of the space of partitions of N objects. Including the boundary

partitions, i.e., the 1-partition and the N -partition, AMI is homogenous within

B�1
N .
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• limN→∞ AMI(u) = 0 (superexponentially)
• the space defined by AMI is “geometry-free”
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Lemma and theorems
Lemma
AMI is a homogeneous loss function over the interior of P(N).
Including boundary partitions, AMI is homogeneous within BN

−1.

Theorem
For a homogeneous loss function `, the uniform average of
P(c | γ,d) over γ is L(c)/r .

Theorem
For the community detection problem with the AMI loss function,
the uniform average of P(c | γ) over γ equals L(c)/r .

Implications
• Any subset of problems for which an algorithm

over-performs others is balanced by another subset for
which is over-performed by others.
• A non-uniform subset of problems may have an algorithm

that over-performs another.



Relating metadata and structure

Complementary roles
• Metadata describe the nodes (individually)
• Communities describe how the nodes interact

Proposed hypothesis tests
1 blockmodel entropy significance test (BESTest)

• test whether metadata and communities are related
• case (i)

2 neo–stochastic blockmodel (neoSBM)
• test whether metadata represent the same or different

aspects as communities
• case (ii)



Testing for a relationship btw metadata and structure
Blockmodel entropy significance test (BESTest)
• Assumptions

• network G generated via SBM with partition C
• metadata partition π

• Hypotheses
• H0: π is irrelevant to C
• HA: π is relevant to C

• Test statistic
• SBM with MLE parameters ω̂rs =

mn

nr ns
• entropy HSBM(G;π)

• Estimation
• sample entropies H(G; π̃) over random permutations π̃
• simplification (Bernoulli SBM) or first-order approximation

(sparse networks) of H(G)
• p-value

• p = Pr(H(G; π̃) ≤ HSBM(G;π))



Sensitivity of the BESTest p-value

Synthetic networks
• N = 1000 nodes
• two planted communities r , s

• nodes allocated with uniform probability to r , s

• community strength ε =
ωrs

ωrr
• low ε: strongly assortative communities
• value & constancy of density unclear

• nodes labeled correctly with probability ` ∈ [0,1]
• otherwise randomly labeled

• Pr(metadata matches community) =
1 + `

2



Sensitivity of the BESTest p-value

• community strength ε =
ωrs

ωrr
• nodes labeled correctly with probability ` ∈ [0,1]
• detectability regime ε < λ

Decelle, Krzakala, Moore, Zdeborova • 2011 • Phys. Rev. Lett.

The second set, the malaria var gene networks, comprises nine net-
works on the same set of nodes and three sets of metadata. For each
network, we find a nonsignificant P value when the metadata denote
the parasite genome of origin (Table 2; see table S4 for results using ad-
ditional models of community structure and additional metadata). In
contrast to the Lazega Lawyers network, these genomemetadata are sta-
tistically irrelevant for explaining the observed patterns of gene recom-
binations. This finding substantially strengthens the conclusions of
Larremore et al. (41), which used a less sensitive test based on label as-
sortativity. However, some metadata for these networks do correlate
(see Supplementary Text B).

Diagnosing the structural aspects captured by metadata
and communities
Our secondmethod provides a direct means to diagnose whether some
metadata and a network’s detected communities differ because they
reveal different aspects of the network’s structure [case (ii)]. We ac-
complish this by extending the SBM to probe the local structure

around and between the metadata partition and the detected struc-
tural communities. This extended model, which we call the neoSBM,
performs community detection under a constraint in which each node
is assigned one of two states, which we call blue or red, and a parameter
q that governs the number of nodes in each state. If a node is blue, then
its community is fixed as its metadata label, but if it is red, then its com-
munity is free to be chosen by the model. We choose q automatically
within the inference step of the model by imposing a likelihood penalty
in the form of a Bernoulli prior with parameter q, which controls for the
additional freedom that comes from varying q. The neoSBM’s log like-
lihood isLneoSBM =LSBM + qy(q), wherey(q) may be interpreted as the
cost of freeing a node from its metadata label (see Supplementary Text
A for the exact formulation).

By varying the cost of freeing a node, we can use the neoSBM to
produce a graphical diagnostic of the interior of the space between
the metadata partition and the inferred community partition. In this
way, the neoSBMcan shed light on how themetadata and inferred com-
munity partitions are related, beyond direct comparison of the partitions
via standard techniques such as normalized mutual information or the
Rand index. As the cost of freeing nodes is reduced, the neoSBM creates
a path through the space of partitions from metadata to the optimal
community partition and, as it does so, we monitor the improvement
of the partition by the increase in SBM log likelihood. A steady increase
indicates that the neoSBM is incrementally refining the metadata
partition until it matches the globally optimal SBM communities. This
behavior implies that the metadata and community partitions represent
related aspects of the network structure. On the other hand, if the SBM
likelihood remains constant for a substantial range of q, followed by a
sharp increase or jump, then it indicates that the neoSBM has moved
fromone local optimumto another.Multiple plateaus and jumps indicate
that several local optima have been traversed, revealing that the partitions
are capturing different aspects of the network’s structure.

To demonstrate the usage of the neoSBM, we examine the path be-
tween partitions for a synthetic network with four locally optimal parti-
tions, which correspond to the four distinct peaks in the surface plot
(Fig. 3A; see Supplementary Text A for a complete description of syn-
thetic network generation). We take the partition of the lowest of these
peaks asmetadata and use the neoSBM to generate a path to the globally
optimal partition by varying the q parameter of the neoSBM from0 to 1.
The corresponding changes in the SBM log likelihood and the number

Table 1. BESTest P values for Lazega Lawyers.

Metadata attribute

Network Status Gender Office Practice Law school

Friendship <10−6 0.034 <10−6 0.033 0.134

Cowork <10−3 0.094 <10−6 <10−6 0.922

Advice <10−6 0.010 <10−6 <10−6 0.205

Table 2. BESTest P values for malaria var genes.

var gene network number

1 2 3 4 5 6 7 8 9

Genome 0.566 0.064 0.536 0.588 0.382 0.275 0.020 0.464 0.115

Fig. 2. Expected P value estimates of the blockmodel entropy significance test as the correlation ℓ between metadata and planted communities increases (each
metadata label correctly reflects the planted community with probability (1 + ℓ)/2; see Supplementary Text B). Each curve represents networks with a fixed community
strength D =wrs/wrr. Solid lines indicate strong community structure in the so-called detectable regime (D < l), whereas dashed lines representweak undetectable communities (D > l)
(8). Three block density diagrams visually depict D values.
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Demonstrations of BESTest on real-world networks

Lazega Lawyers
• 71 attorneys
• 3 link types

(friendship, advice, cases)
• 5 metadata variables

(status, gender, location,
practice, school)

The second set, the malaria var gene networks, comprises nine net-
works on the same set of nodes and three sets of metadata. For each
network, we find a nonsignificant P value when the metadata denote
the parasite genome of origin (Table 2; see table S4 for results using ad-
ditional models of community structure and additional metadata). In
contrast to the Lazega Lawyers network, these genomemetadata are sta-
tistically irrelevant for explaining the observed patterns of gene recom-
binations. This finding substantially strengthens the conclusions of
Larremore et al. (41), which used a less sensitive test based on label as-
sortativity. However, some metadata for these networks do correlate
(see Supplementary Text B).

Diagnosing the structural aspects captured by metadata
and communities
Our secondmethod provides a direct means to diagnose whether some
metadata and a network’s detected communities differ because they
reveal different aspects of the network’s structure [case (ii)]. We ac-
complish this by extending the SBM to probe the local structure

around and between the metadata partition and the detected struc-
tural communities. This extended model, which we call the neoSBM,
performs community detection under a constraint in which each node
is assigned one of two states, which we call blue or red, and a parameter
q that governs the number of nodes in each state. If a node is blue, then
its community is fixed as its metadata label, but if it is red, then its com-
munity is free to be chosen by the model. We choose q automatically
within the inference step of the model by imposing a likelihood penalty
in the form of a Bernoulli prior with parameter q, which controls for the
additional freedom that comes from varying q. The neoSBM’s log like-
lihood isLneoSBM =LSBM + qy(q), wherey(q) may be interpreted as the
cost of freeing a node from its metadata label (see Supplementary Text
A for the exact formulation).

By varying the cost of freeing a node, we can use the neoSBM to
produce a graphical diagnostic of the interior of the space between
the metadata partition and the inferred community partition. In this
way, the neoSBMcan shed light on how themetadata and inferred com-
munity partitions are related, beyond direct comparison of the partitions
via standard techniques such as normalized mutual information or the
Rand index. As the cost of freeing nodes is reduced, the neoSBM creates
a path through the space of partitions from metadata to the optimal
community partition and, as it does so, we monitor the improvement
of the partition by the increase in SBM log likelihood. A steady increase
indicates that the neoSBM is incrementally refining the metadata
partition until it matches the globally optimal SBM communities. This
behavior implies that the metadata and community partitions represent
related aspects of the network structure. On the other hand, if the SBM
likelihood remains constant for a substantial range of q, followed by a
sharp increase or jump, then it indicates that the neoSBM has moved
fromone local optimumto another.Multiple plateaus and jumps indicate
that several local optima have been traversed, revealing that the partitions
are capturing different aspects of the network’s structure.

To demonstrate the usage of the neoSBM, we examine the path be-
tween partitions for a synthetic network with four locally optimal parti-
tions, which correspond to the four distinct peaks in the surface plot
(Fig. 3A; see Supplementary Text A for a complete description of syn-
thetic network generation). We take the partition of the lowest of these
peaks asmetadata and use the neoSBM to generate a path to the globally
optimal partition by varying the q parameter of the neoSBM from0 to 1.
The corresponding changes in the SBM log likelihood and the number

Table 1. BESTest P values for Lazega Lawyers.

Metadata attribute

Network Status Gender Office Practice Law school

Friendship <10−6 0.034 <10−6 0.033 0.134

Cowork <10−3 0.094 <10−6 <10−6 0.922

Advice <10−6 0.010 <10−6 <10−6 0.205

Table 2. BESTest P values for malaria var genes.

var gene network number

1 2 3 4 5 6 7 8 9

Genome 0.566 0.064 0.536 0.588 0.382 0.275 0.020 0.464 0.115

Fig. 2. Expected P value estimates of the blockmodel entropy significance test as the correlation ℓ between metadata and planted communities increases (each
metadata label correctly reflects the planted community with probability (1 + ℓ)/2; see Supplementary Text B). Each curve represents networks with a fixed community
strength D =wrs/wrr. Solid lines indicate strong community structure in the so-called detectable regime (D < l), whereas dashed lines representweak undetectable communities (D > l)
(8). Three block density diagrams visually depict D values.
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Malaria parasite genes
• 307 gene sequences
• 9 layers

(genetic substring–sharing
networks)

• 3 metadata variables
(upstream promoter, cysteine /
PoLV group, parasite origin)
Bull, Kyes, Buckee, &al • 2007 • Mol. Biochem.
Parasitol.

The second set, the malaria var gene networks, comprises nine net-
works on the same set of nodes and three sets of metadata. For each
network, we find a nonsignificant P value when the metadata denote
the parasite genome of origin (Table 2; see table S4 for results using ad-
ditional models of community structure and additional metadata). In
contrast to the Lazega Lawyers network, these genomemetadata are sta-
tistically irrelevant for explaining the observed patterns of gene recom-
binations. This finding substantially strengthens the conclusions of
Larremore et al. (41), which used a less sensitive test based on label as-
sortativity. However, some metadata for these networks do correlate
(see Supplementary Text B).

Diagnosing the structural aspects captured by metadata
and communities
Our secondmethod provides a direct means to diagnose whether some
metadata and a network’s detected communities differ because they
reveal different aspects of the network’s structure [case (ii)]. We ac-
complish this by extending the SBM to probe the local structure

around and between the metadata partition and the detected struc-
tural communities. This extended model, which we call the neoSBM,
performs community detection under a constraint in which each node
is assigned one of two states, which we call blue or red, and a parameter
q that governs the number of nodes in each state. If a node is blue, then
its community is fixed as its metadata label, but if it is red, then its com-
munity is free to be chosen by the model. We choose q automatically
within the inference step of the model by imposing a likelihood penalty
in the form of a Bernoulli prior with parameter q, which controls for the
additional freedom that comes from varying q. The neoSBM’s log like-
lihood isLneoSBM =LSBM + qy(q), wherey(q) may be interpreted as the
cost of freeing a node from its metadata label (see Supplementary Text
A for the exact formulation).

By varying the cost of freeing a node, we can use the neoSBM to
produce a graphical diagnostic of the interior of the space between
the metadata partition and the inferred community partition. In this
way, the neoSBMcan shed light on how themetadata and inferred com-
munity partitions are related, beyond direct comparison of the partitions
via standard techniques such as normalized mutual information or the
Rand index. As the cost of freeing nodes is reduced, the neoSBM creates
a path through the space of partitions from metadata to the optimal
community partition and, as it does so, we monitor the improvement
of the partition by the increase in SBM log likelihood. A steady increase
indicates that the neoSBM is incrementally refining the metadata
partition until it matches the globally optimal SBM communities. This
behavior implies that the metadata and community partitions represent
related aspects of the network structure. On the other hand, if the SBM
likelihood remains constant for a substantial range of q, followed by a
sharp increase or jump, then it indicates that the neoSBM has moved
fromone local optimumto another.Multiple plateaus and jumps indicate
that several local optima have been traversed, revealing that the partitions
are capturing different aspects of the network’s structure.

To demonstrate the usage of the neoSBM, we examine the path be-
tween partitions for a synthetic network with four locally optimal parti-
tions, which correspond to the four distinct peaks in the surface plot
(Fig. 3A; see Supplementary Text A for a complete description of syn-
thetic network generation). We take the partition of the lowest of these
peaks asmetadata and use the neoSBM to generate a path to the globally
optimal partition by varying the q parameter of the neoSBM from0 to 1.
The corresponding changes in the SBM log likelihood and the number

Table 1. BESTest P values for Lazega Lawyers.

Metadata attribute

Network Status Gender Office Practice Law school

Friendship <10−6 0.034 <10−6 0.033 0.134

Cowork <10−3 0.094 <10−6 <10−6 0.922

Advice <10−6 0.010 <10−6 <10−6 0.205

Table 2. BESTest P values for malaria var genes.

var gene network number

1 2 3 4 5 6 7 8 9

Genome 0.566 0.064 0.536 0.588 0.382 0.275 0.020 0.464 0.115

Fig. 2. Expected P value estimates of the blockmodel entropy significance test as the correlation ℓ between metadata and planted communities increases (each
metadata label correctly reflects the planted community with probability (1 + ℓ)/2; see Supplementary Text B). Each curve represents networks with a fixed community
strength D =wrs/wrr. Solid lines indicate strong community structure in the so-called detectable regime (D < l), whereas dashed lines representweak undetectable communities (D > l)
(8). Three block density diagrams visually depict D values.
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Demonstrations of BESTest on real-world networks

Lazega Lawyers
• 71 attorneys
• 3 link types

(friendship, advice, cases)
• 5 metadata variables

(status, gender, location,
practice, school)

The second set, the malaria var gene networks, comprises nine net-
works on the same set of nodes and three sets of metadata. For each
network, we find a nonsignificant P value when the metadata denote
the parasite genome of origin (Table 2; see table S4 for results using ad-
ditional models of community structure and additional metadata). In
contrast to the Lazega Lawyers network, these genomemetadata are sta-
tistically irrelevant for explaining the observed patterns of gene recom-
binations. This finding substantially strengthens the conclusions of
Larremore et al. (41), which used a less sensitive test based on label as-
sortativity. However, some metadata for these networks do correlate
(see Supplementary Text B).

Diagnosing the structural aspects captured by metadata
and communities
Our secondmethod provides a direct means to diagnose whether some
metadata and a network’s detected communities differ because they
reveal different aspects of the network’s structure [case (ii)]. We ac-
complish this by extending the SBM to probe the local structure

around and between the metadata partition and the detected struc-
tural communities. This extended model, which we call the neoSBM,
performs community detection under a constraint in which each node
is assigned one of two states, which we call blue or red, and a parameter
q that governs the number of nodes in each state. If a node is blue, then
its community is fixed as its metadata label, but if it is red, then its com-
munity is free to be chosen by the model. We choose q automatically
within the inference step of the model by imposing a likelihood penalty
in the form of a Bernoulli prior with parameter q, which controls for the
additional freedom that comes from varying q. The neoSBM’s log like-
lihood isLneoSBM =LSBM + qy(q), wherey(q) may be interpreted as the
cost of freeing a node from its metadata label (see Supplementary Text
A for the exact formulation).

By varying the cost of freeing a node, we can use the neoSBM to
produce a graphical diagnostic of the interior of the space between
the metadata partition and the inferred community partition. In this
way, the neoSBMcan shed light on how themetadata and inferred com-
munity partitions are related, beyond direct comparison of the partitions
via standard techniques such as normalized mutual information or the
Rand index. As the cost of freeing nodes is reduced, the neoSBM creates
a path through the space of partitions from metadata to the optimal
community partition and, as it does so, we monitor the improvement
of the partition by the increase in SBM log likelihood. A steady increase
indicates that the neoSBM is incrementally refining the metadata
partition until it matches the globally optimal SBM communities. This
behavior implies that the metadata and community partitions represent
related aspects of the network structure. On the other hand, if the SBM
likelihood remains constant for a substantial range of q, followed by a
sharp increase or jump, then it indicates that the neoSBM has moved
fromone local optimumto another.Multiple plateaus and jumps indicate
that several local optima have been traversed, revealing that the partitions
are capturing different aspects of the network’s structure.

To demonstrate the usage of the neoSBM, we examine the path be-
tween partitions for a synthetic network with four locally optimal parti-
tions, which correspond to the four distinct peaks in the surface plot
(Fig. 3A; see Supplementary Text A for a complete description of syn-
thetic network generation). We take the partition of the lowest of these
peaks asmetadata and use the neoSBM to generate a path to the globally
optimal partition by varying the q parameter of the neoSBM from0 to 1.
The corresponding changes in the SBM log likelihood and the number

Table 1. BESTest P values for Lazega Lawyers.

Metadata attribute

Network Status Gender Office Practice Law school

Friendship <10−6 0.034 <10−6 0.033 0.134

Cowork <10−3 0.094 <10−6 <10−6 0.922

Advice <10−6 0.010 <10−6 <10−6 0.205

Table 2. BESTest P values for malaria var genes.

var gene network number

1 2 3 4 5 6 7 8 9

Genome 0.566 0.064 0.536 0.588 0.382 0.275 0.020 0.464 0.115

Fig. 2. Expected P value estimates of the blockmodel entropy significance test as the correlation ℓ between metadata and planted communities increases (each
metadata label correctly reflects the planted community with probability (1 + ℓ)/2; see Supplementary Text B). Each curve represents networks with a fixed community
strength D =wrs/wrr. Solid lines indicate strong community structure in the so-called detectable regime (D < l), whereas dashed lines representweak undetectable communities (D > l)
(8). Three block density diagrams visually depict D values.
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(genetic substring–sharing
networks)

• 3 metadata variables
(upstream promoter, cysteine /
PoLV group, parasite origin)
Bull, Kyes, Buckee, &al • 2007 • Mol. Biochem.
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The second set, the malaria var gene networks, comprises nine net-
works on the same set of nodes and three sets of metadata. For each
network, we find a nonsignificant P value when the metadata denote
the parasite genome of origin (Table 2; see table S4 for results using ad-
ditional models of community structure and additional metadata). In
contrast to the Lazega Lawyers network, these genomemetadata are sta-
tistically irrelevant for explaining the observed patterns of gene recom-
binations. This finding substantially strengthens the conclusions of
Larremore et al. (41), which used a less sensitive test based on label as-
sortativity. However, some metadata for these networks do correlate
(see Supplementary Text B).

Diagnosing the structural aspects captured by metadata
and communities
Our secondmethod provides a direct means to diagnose whether some
metadata and a network’s detected communities differ because they
reveal different aspects of the network’s structure [case (ii)]. We ac-
complish this by extending the SBM to probe the local structure

around and between the metadata partition and the detected struc-
tural communities. This extended model, which we call the neoSBM,
performs community detection under a constraint in which each node
is assigned one of two states, which we call blue or red, and a parameter
q that governs the number of nodes in each state. If a node is blue, then
its community is fixed as its metadata label, but if it is red, then its com-
munity is free to be chosen by the model. We choose q automatically
within the inference step of the model by imposing a likelihood penalty
in the form of a Bernoulli prior with parameter q, which controls for the
additional freedom that comes from varying q. The neoSBM’s log like-
lihood isLneoSBM =LSBM + qy(q), wherey(q) may be interpreted as the
cost of freeing a node from its metadata label (see Supplementary Text
A for the exact formulation).

By varying the cost of freeing a node, we can use the neoSBM to
produce a graphical diagnostic of the interior of the space between
the metadata partition and the inferred community partition. In this
way, the neoSBMcan shed light on how themetadata and inferred com-
munity partitions are related, beyond direct comparison of the partitions
via standard techniques such as normalized mutual information or the
Rand index. As the cost of freeing nodes is reduced, the neoSBM creates
a path through the space of partitions from metadata to the optimal
community partition and, as it does so, we monitor the improvement
of the partition by the increase in SBM log likelihood. A steady increase
indicates that the neoSBM is incrementally refining the metadata
partition until it matches the globally optimal SBM communities. This
behavior implies that the metadata and community partitions represent
related aspects of the network structure. On the other hand, if the SBM
likelihood remains constant for a substantial range of q, followed by a
sharp increase or jump, then it indicates that the neoSBM has moved
fromone local optimumto another.Multiple plateaus and jumps indicate
that several local optima have been traversed, revealing that the partitions
are capturing different aspects of the network’s structure.

To demonstrate the usage of the neoSBM, we examine the path be-
tween partitions for a synthetic network with four locally optimal parti-
tions, which correspond to the four distinct peaks in the surface plot
(Fig. 3A; see Supplementary Text A for a complete description of syn-
thetic network generation). We take the partition of the lowest of these
peaks asmetadata and use the neoSBM to generate a path to the globally
optimal partition by varying the q parameter of the neoSBM from0 to 1.
The corresponding changes in the SBM log likelihood and the number

Table 1. BESTest P values for Lazega Lawyers.

Metadata attribute

Network Status Gender Office Practice Law school

Friendship <10−6 0.034 <10−6 0.033 0.134

Cowork <10−3 0.094 <10−6 <10−6 0.922

Advice <10−6 0.010 <10−6 <10−6 0.205

Table 2. BESTest P values for malaria var genes.

var gene network number

1 2 3 4 5 6 7 8 9

Genome 0.566 0.064 0.536 0.588 0.382 0.275 0.020 0.464 0.115

Fig. 2. Expected P value estimates of the blockmodel entropy significance test as the correlation ℓ between metadata and planted communities increases (each
metadata label correctly reflects the planted community with probability (1 + ℓ)/2; see Supplementary Text B). Each curve represents networks with a fixed community
strength D =wrs/wrr. Solid lines indicate strong community structure in the so-called detectable regime (D < l), whereas dashed lines representweak undetectable communities (D > l)
(8). Three block density diagrams visually depict D values.
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Diagnosing the structural aspects captured by both
neo–stochastic blockmodel (neoSBM)
• Assumptions

• network G, |G| = N, optimal SBM partition C
• metadata partition π
• latent node states zi ∈ {b, r}; q = |{i | zi = r}|
• uniform prior probability θ = Pr(zi = r )

• Likelihood
• cost of freedom ψ(θ) =

1
Nθ

∑
i

δzi r

(
log

θ

1− θ

)
• log-likelihood Lneo(G;π, z) = LSBM(G;π) + qψ(θ)

• Estimation
• necessarily LSBM(G;π) ≤ LSBM(G; C)
• optimize LSBM when q̂ =

∑
i

1− δπi ,Ci

Idea
Interpolate through P(N) from π to C and monitor improvement
in LSBM.



Demonstration of neoSBM on the Karate Club network

neoSBM versus neoDCSBM
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ig S1 The results of the neoSBM and the degree-corrected neoSBM on the arate lub
network. The SBM and DCSBM log likelihood surfaces (A and C respectively) show distinct
two peaks that correspond to the same two partitions of the network: the two social factions and
the leader-follower partition. When we use the faction partition as metadata, we from the output
(B and D) that both models change a single node in order to reach the locally optimal partition.
For the neoDCSBM (D), this is the global optimum and no further change is observed. For the
neoSBM, the leader-follower partition is globally optimal, so once theta is large enough we see
the model jump to this partition.

this is not the global optimum (see Fig. 1) and so once ✓ is large enough we see a discontinuous

jump as it switches to the globally optimal high-degree/low-degree partition.

A.3.2 neoSBM and the Malaria var gene networks

The metadata corresponding to upstream promoter sequence (UPS) are known to correlate with

community structure in the malaria var gene networks, particularly at loci one and six (21, 41).

We provided the neoSBM with UPS metadata (K = 4) and investigated the path of partitions

between the metadata partition and the globally optimal partitions for each of the two networks.

f .. K C



Demonstration of neoSBM on a synthetic network

of free nodes show three discontinuous jumps (Fig. 3C), one for each
time the model encounters a new locally optimal partition.

Examining the partitions along the neoSBM’s path can provide di-
rect insights into the relationship betweenmetadata and network struc-
ture. Figure 3B shows the structure at each of the four traversed optima
as block-wise interaction matrices w. Each partition has a different type
of large-scale structure, from core periphery to assortative patterns. In
this way, when metadata do not closely match inferred communities,
the neoSBM can shed light on whether and how the metadata capture
similar or different aspects of network structure.

We now present an application of the neoSBM to the Lazega Lawyers
data analyzed in the previous section. When initialized with the law
school andoffice locationmetadata, theneoSBMproducesdistinct patterns
of relaxation to the global optimum (Fig. 4, A and C), approaching it
from opposite sides of the peak in the likelihood surface. Starting at the
law school metadata, the model traverses the space of partitions to the
global SBM-optimal partition without encountering any local optima.
In contrast, the path from the officemetadata crosses one local optimum
(Fig. 4, A and B), which indicates that the law school metadata are more
closely associated with the large-scale organization of the network than

are the office metadata. However, both sets of metadata labels are rel-
evant, as we determined in the previous section using the BESTest.
Results for other real-world networks are included in Supplementary
Text A, including generalizations of the neoSBM to other community
detection methods.

DISCUSSION
Treating node metadata as ground truth communities for real-world
networks is commonly justified via an erroneous belief that the purpose
of community detection is to recover groups thatmatchmetadata labels
(11, 13, 31, 42). Consequently, metadata recovery is often used to mea-
sure community detection performance (43), and metadata are often
referred to as ground truth (21, 44). However, the organization of real
networks typically correlates with multiple sets of metadata, both ob-
served and unobserved. Thus, labeling any particular set to be “ground
truth” is an arbitrary and generally unjustified decision. Furthermore,
when a community detection algorithm fails to identify communities that
match knownmetadata, poor algorithmperformance is indistinguishable
from three alternative possibilities: (i) The metadata are irrelevant to the
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Fig. 4. The neoSBM on Lazega Lawyers friendship data (52). (A) Points of two neoSBM paths using office (red) and law school (blue) metadata partitions are shown on the
stochastic blockmodel likelihood surface (grayscale to emphasize paths). (B) Block density diagrams depict community structure formetadata, (1 and 2) intermediate optimal, and
(3) globally optimal partitions, where darker color indicates higher probability of interaction. (C) The neoSBM traverses two distinct paths to the global optimum (3), but only the
path beginning at the office metadata partition traverses a local optimum (1), indicated by a plateau in free nodes q and log likelihood.
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Fig. 3. The neoSBM on synthetic data. (A) The stochastic blockmodel likelihood surface shows four distinct peaks corresponding to a sequence of locally optimal partitions.
(B) Block density diagrams depict community structure for locally optimal partitions, where darker color indicates higher probability of interaction. (C) The neoSBM, with partition
1 as the metadata partition, interpolates between partition 1 and the globally optimal stochastic blockmodel partition 4. The number of free nodes q and stochastic blockmodel
log likelihood as a function of q show three discontinuous jumps as the neoSBM traverses each of the locally optimal partitions (1 to 4).
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Observations
• transition from lowest local maximum π to highest C

• core–periphery structure at π
• assortative group structure at C



Demonstration of neoSBM on the Lazenga Lawyers

• office location π1 and law school π2 metadata partitions
• friendship network structure with global SBM optimum C

of free nodes show three discontinuous jumps (Fig. 3C), one for each
time the model encounters a new locally optimal partition.

Examining the partitions along the neoSBM’s path can provide di-
rect insights into the relationship betweenmetadata and network struc-
ture. Figure 3B shows the structure at each of the four traversed optima
as block-wise interaction matrices w. Each partition has a different type
of large-scale structure, from core periphery to assortative patterns. In
this way, when metadata do not closely match inferred communities,
the neoSBM can shed light on whether and how the metadata capture
similar or different aspects of network structure.

We now present an application of the neoSBM to the Lazega Lawyers
data analyzed in the previous section. When initialized with the law
school andoffice locationmetadata, theneoSBMproducesdistinct patterns
of relaxation to the global optimum (Fig. 4, A and C), approaching it
from opposite sides of the peak in the likelihood surface. Starting at the
law school metadata, the model traverses the space of partitions to the
global SBM-optimal partition without encountering any local optima.
In contrast, the path from the officemetadata crosses one local optimum
(Fig. 4, A and B), which indicates that the law school metadata are more
closely associated with the large-scale organization of the network than

are the office metadata. However, both sets of metadata labels are rel-
evant, as we determined in the previous section using the BESTest.
Results for other real-world networks are included in Supplementary
Text A, including generalizations of the neoSBM to other community
detection methods.

DISCUSSION
Treating node metadata as ground truth communities for real-world
networks is commonly justified via an erroneous belief that the purpose
of community detection is to recover groups thatmatchmetadata labels
(11, 13, 31, 42). Consequently, metadata recovery is often used to mea-
sure community detection performance (43), and metadata are often
referred to as ground truth (21, 44). However, the organization of real
networks typically correlates with multiple sets of metadata, both ob-
served and unobserved. Thus, labeling any particular set to be “ground
truth” is an arbitrary and generally unjustified decision. Furthermore,
when a community detection algorithm fails to identify communities that
match knownmetadata, poor algorithmperformance is indistinguishable
from three alternative possibilities: (i) The metadata are irrelevant to the
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Fig. 4. The neoSBM on Lazega Lawyers friendship data (52). (A) Points of two neoSBM paths using office (red) and law school (blue) metadata partitions are shown on the
stochastic blockmodel likelihood surface (grayscale to emphasize paths). (B) Block density diagrams depict community structure formetadata, (1 and 2) intermediate optimal, and
(3) globally optimal partitions, where darker color indicates higher probability of interaction. (C) The neoSBM traverses two distinct paths to the global optimum (3), but only the
path beginning at the office metadata partition traverses a local optimum (1), indicated by a plateau in free nodes q and log likelihood.
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Fig. 3. The neoSBM on synthetic data. (A) The stochastic blockmodel likelihood surface shows four distinct peaks corresponding to a sequence of locally optimal partitions.
(B) Block density diagrams depict community structure for locally optimal partitions, where darker color indicates higher probability of interaction. (C) The neoSBM, with partition
1 as the metadata partition, interpolates between partition 1 and the globally optimal stochastic blockmodel partition 4. The number of free nodes q and stochastic blockmodel
log likelihood as a function of q show three discontinuous jumps as the neoSBM traverses each of the locally optimal partitions (1 to 4).
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Observations
• no intermediate local optima encountered from π2
• one intermediate local optimum encountered from π1



Discussion

There is no universally accepted definition of community
structure, nor should there be.

Outlook
• trade-off between general and specialized community

detection methods
• general: perform reasonably well in many settings
• specialized: perform very well in tailored settings

• most work to date is on general methods
• need to better understand general–specific trade-offs

• measure errors obtained in domain-agnostic applications
• incorporate metadata into the inference process



Fin


	Introduction
	The trouble with metadata and community detection
	Ground truth and metadata in community detection
	Relating metadata and structure
	Discussion
	Conclusion

