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Abstract

© Metadata are not ground truth
® Community detection is not uniquely solvable
©® Metadata—community interactions can be measured



Evaluating community detection methods

Community detection

¢ Analog of clustering for network (relational) data
e Diverse applications
¢ Diverse meanings of “community”

Ground truth

e Useful (vital?) to evaluate & compare methods
e Known for generative simulation-based models
¢ Epistemically questionable for empirical models

Metadata
e Categories or classifications
sex, ethnicity, ZIP, primary diagnosis
e Often substituted for ground truth
¢ Simulations may not reflect real-world processes



The trouble with metadata and community detection

Dilemma

¢ High metadata—community correlation indicates that
metadata are important to network generation
¢ Low correlation may arise from
@ irrelevance of metadata to structure
@ indirect relationship between metadata and structure
@ absence of community structure
@® failure of community detection method

Possible implications

¢ Over-reporting of poor performance by community detection
methods
e Under-reporting of patterns uncorrelated with metadata



lllustration: Zachary’s Karate Club

Epistemological
status

e Heterogeneous,
weighted links
® university classes
* karate workouts
* rathskeller
® nearby bar
° tournaments
e Multiple metadata
attributes
* political leaning
* faction joined

e Erroneous datum

18 1
Zachary » 1977 « J. Anthropol. Res.



lllustration: Zachary’s Karate Club

Specificity / well-definedness

e Embed the space of partitions in R?
¢ Graph log-likelihoods under the stochastic blockmodel

a)

Funke & Becker « 2019 « PLOS ONE



lllustration: Zachary’s Karate Club
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The ground truth community detection problem

® G a network

generated by a process g
from a ground truth partition 7

e C be a partition of G
obtained by a community detection method f

* d be a measure of distance between partitions of G

Inverse Problem

f*(G) = argmind (T, f(G))
f

Universal Solution

I, Y{g, T}, argmind (T, 1(g(T)))
f



Ground-truth community detection is an ill-posed
inverse problem

Well-posedness

@ A solution exists

@ The solution changes continuously with initial conditions



Ground-truth community detection is an ill-posed
inverse problem

Well-posedness

@ A solution exists

@ The solution changes continuously with initial conditions

Theorem
For a fixed network G, the solution to the ground truth community
detection problem is not unique.



Ground-truth community detection is an ill-posed
inverse problem

Well-posedness

@ A solution exists
i ]

@ The solution changes continuously with initial conditions

Theorem
For a fixed network G, the solution to the ground truth community
detection problem is not unique.
Proof.
Any graph G can be produced with positive probability by both
e T = coarsest partition; g = Erdés-Rényi model
e T =finest partition; g = deterministic model that recovers G
&



No Free Lunch for community detection

NFL for machine learning

For supervised learning problems, the expected misclassification
rate across all possible data sets is independent of the algorithm.

NFL for community detection

© Translate the community detection problem into the
Extended Bayesian Framework (EBF)

® Choose a suitable loss function ¢ with total error L(¢)

® Prove NFL:

v, > UT,Hg(T))) = L)
9,7



Community detection in the EBF

Supervised EBF (classification)
Posit:

¢ acountable input space X, |X|=n

a countable output space Y, |Y|=r

the density function ox = P(x | o)

the conditional distribution v = pY | X

a training set d of samples (x;, yi), Yi ~ v(Xj)
Compute:

e for each test case x € X, a hypothesis he Y
e model (algorithm) P(h | d, x) combining priors and data



Community detection in the EBF

Supervised EBF (classification)
Posit:

¢ acountable input space X, |X|=n

a countable output space Y, |Y|=r

the density function ox = P(x | o)

the conditional distribution v = pY | X

a training set d of samples (x;, yi), Yi ~ v(Xj)
Compute:

e for each test case x € X, a hypothesis he Y
e model (algorithm) P(h | d, x) combining priors and data

Unsupervised EBF (clustering and community
detection)

e d=0

® P(h) encodes priors (assumptions about ) only



Loss functions

Supervised EBF (classification)

e error random variable C ~ P(c | h,~, d)
e expected error E(C | h,~, d)
e typical loss functions ¢

misclassification rate
normalized mutual information



Loss functions

Supervised EBF (classification)

e error random variable C ~ P(c | h,~, d)
e expected error E(C | h,~, d)
e typical loss functions ¢

misclassification rate
normalized mutual information

Unsupervised EBF (clustering and community
detection)

Group labels:

¢ matter to classification problems
e don’t matter to clustering problems



Normalized mutual information
e N objects
e partition u € P(N) of objects into K, groups
e proportional sizes p; = |uj|/N

Entropy of u:
Ku

H(u) = = pilog(p;)

i=1

Mutual information between u, v:

Ku Kv pi
lu,v) = pjilo
(u,v) 2”21 ilog ()

Normalized mutual information between u, v:

I(u, v)

NMl(u, v) = W



Loss functions and a priori superiority

Typical loss functions imply a .

priori superiority of some
algorithms based on labeling
schemes



Loss functions and a priori superiority

Typical loss functions imply a
priori superiority of some
algorithms based on labeling

schemes
NMI on P(3):
Partition 2

Partition 1 2 4 5
1 0 0 0
2 1 0.27 0.76
3 0.27 0.27 0.76
4 0.27 1 0.76
5 0.76 0.76 1

E[NMI] 0 0.46 046 0.66

5

Adjusted MI (AMI) on P(3):

Partition 2

Partition 1 2 3 4 5
1 0 0 0 0
2 1027 027 076
3 027 1 027 0.76
4 027 027 1 076
5 0.76 0.76 0.76 1

E[NMI] 0 046 046 046 0.66




Loss functions and a priori superiority

Typical loss functions imply a
priori superiority of some
algorithms based on labeling

1

2

3

4

5

Adjusted MI (AMI) on P(3):

Partition 2

Partition 1 1 2 3 4 5
1 1 0 0 0 0
2 0 1027 027 076
3 0 027 1 027 076
4 0 027 027 1 076
5 0 076 076 076 1

E[NMI] |0.20 046 046 046 0.66

schemes
NMI on P(3):
Partition 2
Partition 1 1 2 3 4 5
1 1 0 0 0 0
2 0 1 0.27 0.27 0.76
3 0 0.27 1 0.27 0.76
4 0 027 0.27 1 0.76
5 0 076 076 0.76 1
E[NMI] | 0.20 0.46 046 0.46 0.66
Homogeneity:

e limy_... AMI(u) = 0 (superexponentially)
¢ the space defined by AMI is “geometry-free”



Lemma and theorems

Lemma
AMI is a homogeneous loss function over the interior of P(N).
Including boundary partitions, AMI is homogeneous within By ™"

Theorem
For a homogeneous loss function ¢, the uniform average of
P(c | ~,d) over~isL(c)/r.

Theorem
For the community detection problem with the AMI loss function,
the uniform average of P(c | ) over~ equals L(c)/r.

Implications

* Any subset of problems for which an algorithm
over-performs others is balanced by another subset for
which is over-performed by others.

¢ A non-uniform subset of problems may have an algorithm
that over-performs another.



Relating metadata and structure

Complementary roles

¢ Metadata describe the nodes (individually)
e Communities describe how the nodes interact

Proposed hypothesis tests

© blockmodel entropy significance test (BESTest)
test whether metadata and communities are related
case (i)

® neo—stochastic blockmodel (neoSBM)

test whether metadata represent the same or different
aspects as communities
case (ii)



Testing for a relationship btw metadata and structure
Blockmodel entropy significance test (BESTest)

e Assumptions
network G generated via SBM with partition C
metadata partition =
Hypotheses
Hy: wis irrelevant to C
Hy: wis relevant to C
Test statistic
SBM with MLE parameters Gys = —-

rtis

entropy Hsgw(G; )
Estimation
sample entropies H(G; ) over random permutations 7
simplification (Bernoulli SBM) or first-order approximation
(sparse networks) of H(G)
e p-value
p = Pr(H(G;7) < Hsam(G; 7))



Sensitivity of the BESTest p-value

Synthetic networks

e N = 1000 nodes
¢ two planted communities r, s

nodes allocated with uniform probability to r, s

e community strength ¢ =

Wrr
low e: strongly assortative communities

e nodes labeled correctly with probability ¢ € [0, 1]

otherwise randomly labeled

1
Pr(metadata matches community) = %ﬁ



Sensitivity of the BESTest p-value

e community strength e =

Wrs

w
® nodes labeled correctly wir’fh probability ¢ € [0, 1]
® detectability regime ¢ < A

Statistical significance, p

Decelle, Krzakala, Moore, Zdeborova « 2011 « Phys. Rev. Lett.
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Demonstrations of BESTest on real-world networks

Lazega Lawyers

e 71 attorneys
e 3link types

(friendship, advice, cases)

e 5 metadata variables
(status, gender, location,
practice, school)

Table 1. BESTest P values for Lazega Lawyers.

Metadata attribute

Network Status ~ Gender  Office  Practice  Law school
Friendship <107 0034 <10° 0033 0.134
Cowork <107 0.094 <107 <10°° 0922
Advice <10 0010 <10 <10°° 0.205



Demonstrations of BESTest on real-world networks

Lazega Lawyers

e 71 attorneys

Table 1. BESTest P values for Lazega Lawyers.

® 3 Iink types Metadata attribute
(friendship, advice, CaseS) Network ~ Status  Gender  Office  Practice  Law school

Y 5 metadata Variables Friendship <10°® 0.034 <107® 0.033 0.134
(Status, gender’ Iocatlon’ Cow»ork <107 0.094 <107 <107 0.922

t_ h |) Advice <10°° 0010 <10°  <10° 0205
practice, schoo
Malaria parasite genes

e 307 gene sequences

® 9 layers
(genetic substring—sharing
netwo rks) . Table 2. BESTest P values for malaria var genes.

* 3 metadata variables ) 6 s s M
(upstream promoter, cysteine / T 2 3 4 s s 7 8 o
PoLV group, parasite origin) Genome 0566 0064 0536 0588 0382 0375 0030 0464 0115

Bull, Kyes, Buckee, &al « 2007 « Mol. Biochem.
Parasitol.



Diagnosing the structural aspects captured by both

heo-stochastic blockmodel (heoSBM)

e Assumptions

network G, |G| = N, optimal SBM partition C
metadata partition =

latent node states z; € {b,r}; q=|{i| z = r}|
uniform prior probability & = Pr(z; = r)

e |ikelihood
cost of freedom (0 No Z(Sz, ( 0g +— 9)

log-likelihood Lneo(G; 7, 2) = CSBM( ) + qu(6)
e Estimation

necessarily Lsgm(G; 7) < Lspm(G;C)

optimize Lsgy when §=> 1 —6,.¢,

i

Idea
Interpolate through P(N) from 7 to C and monitor improvement

in ESBM-



Demonstration of neoSBM on the Karate Club network

nheoSBM versus nheoDCSBM
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Demonstration of neoSBM on a synthetic network
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Observations

e transition from lowest local maximum = to highest C

core—periphery structure at =
assortative group structure at C



Demonstration of neoSBM on the Lazenga Lawyers

e office location 7y and law school > metadata partitions
¢ friendship network structure with global SBM optimum C

B Cc

1

Office Law school
Metadata

T

SBM partitions

>

Free nodes, ¢
I
]
2B
S
S
L

SBM log likelihood

SBM log likelihood
Lol

Observations

® no intermediate local optima encountered from 7o
® one intermediate local optimum encountered from 74



Discussion

There is no universally accepted definition of community
structure, nor should there be.

Outlook

e trade-off between general and specialized community
detection methods
general: perform reasonably well in many settings
specialized: perform very well in tailored settings
e most work to date is on general methods
® need to better understand general-specific trade-offs

measure errors obtained in domain-agnostic applications
incorporate metadata into the inference process
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