
Group Actions

Definition: Let X be a set and G be a group. A (left) action of G
on X is a map

G ◊ X æ X
(g, x) ‘æ gx

such that ex = x and g1(g2x) = (g1g2)x for all x œ X and g1, g2 œ G.
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Example 1: Matrix groups acting on Rn
.

• GL2(R) and its subgroups on R2
.

• same for GLn(R) and its subgroups on Rn
.
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Example 2: Dihedral groups acting on polygons

• Dn acting on the vertices of the regular polygon with n sides.
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Example 3: G acts on itself by conjugation.
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Example 4: G acts on the left cosets of a subgroup H.

• Let H be one of the two element subgroups of S3. Consider

the action of S3 on these cosets.
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Orbits and stabilizers

Definition: Two points x, y œ X are G-equivalent if there is a

g œ G such that y = gx. G-equivalence is an equivalence relation

and the classes are called orbits. Our book writes Ox for the orbit

containing x but I like to write Gx.

Example: S3 acting on itself by conjugation.
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Definition: If x œ X , the set of g such that gx = x is called the
stabilizer subgroup or just the stabilizer of x. It is a subgroup of G
written Gx.

Example: S3 acting on itself by conjugation.
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• D4 acting on the square.
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• S4 acting on itself by conjugation.
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• The orthogonal group O(2) acting on the plane.
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• The subgroup Z acting on R.
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• The permutation group Sn acting on strings of 0’s and 1’s of

length n by permuting their positions.
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Proposition: Let x œ X . The map

px : G æ X

defined by p(g) = gx gives a bijection between the cosets of the

stabilizer subgroup Gx and the orbit Gx. In particular [G : Gx] and

|Gx| are either both infinite or both finite, and if both finite then

|Gx| = [G : Gx].

Proof:
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