Classification of finite abelian groups - 1

Proposition: If GG is a finite abelian group of order n, and p is a
prime that divides n, then G has an element of order p.

Proof:

We use induction on n. The key technique is to use the fact that
since (& is abelian, every subgroup H is normal, so you can look at
H and G/H and try to figure out something for G. S
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If n =1, G is the trivial group and the result is true. So suppose
every group of order k < n satisfies the condition.
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1. Suppose that G has no proper subgroups. Since G is abelian this
means that G is cyclic of order p. Thus the result is true in that case.
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2. Otherwise let H be a proper subgroup of G. If p divides the
order of H, then H has an element of order p since H has fewer
elements than G and we can apply the inductive hypothesis.
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3. If H does not have order divisible by p, then p divides the
order of G/H. By the inductive hypothesis, G/H contains an
element of order p.
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4. Suppose_aH is this element of order p. Then (aH )P = H so a?
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5. Let b = alfl. Since |H| is not divisible by p, we can solve
z|H| +yp = 1. Thus
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6. If b = e then a € H, but that isn’t true. Therefore b # e.
However, b = a?!fl = ¢ since a? € H. Thus b has order p in
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Proposition: Let G be a finite abelian group and let p be a prime
number. The following are equivalent:

« every element of G has order p* for some s > 0.
« ( has order p" for some n > 1.

Proof:

Let n be the order of G. If every element of G has order p® for some
s > 0, then by the previous result n must be a power of p.

If n is order a power of p, then by Lagrange’s theorem every element
has order a power of p.
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Classification of finite abelian groups - 2

Proposition: Suppose G is a finite abelian p-group. Let g have
maximal order among elements of G. Then there is a subgroup H so
that G is the internal direct product ond H.

Proof: We will use induction on the order of G. Given ¢ of maximal
order, such that G # @ the strategy of this proof is to find a |
subroup of H of order p such that (g) N H = {0} and so that the
order of gH in G/H is the same as the order of g in G. Since G /H is
of order less than G, by induction there is a subgroup K in G/H so
that G/H is the internal product of (¢H) and K. Then the inverse
image of K in G is the subgroup we want. Goul:
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1. If n =1, then G is cyclic of order p and so we can take H to be
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the trivial group.

2. Now let g € G be of maximal order among the elements of GG. Say

the order of ¢ is p™ Notice that a?" = e for any a € G.
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3. If g generates GG, then G is cyclic and we can take H to be the
trivial group.
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4. Otherwise, choose ad@) in G/(g) of minimal order greater than 1.
This gives an a ¢ (g). Since the order of a is less than the order of
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5. We have af = @or‘ some r. Since g7 =aP " = e we see that

g" is not a generator of (g). This means that p\r
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6. Write r = ps and let b = g~®a. Note that b € (g) since a is not.
Also Then 0¥ = g PPaf = g P°g" = e. Therefore b has order p. Let
H be the subgroup generated by .
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7. H has order p and its intersection with (g) is trivial.

H :430? O\r_di\—f—-

8. Consider gH in G/H H.1f (gH)” = H then g*" € H, but that can
only happen 1f g”" = e. Therefore the order of gH in G/H is still
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9. By induction, there is a subgroup K of G/H so that G/H is the
internal direct product of (¢H) and K, so that
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10. Let J be the preimage of K in G/H under the canonical
homomorphism. J is a subgroup of G that contains H.
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11. G = (g).J. Because given an element u of G, we have uH =

(zH)(kH) where z € (g)H and k € J, so u = zhkh' = zk’
for k' € J. weG.  uH = (3\-\36\4 ) 3 <q7H
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12. If h € J N (g) then hH is in the intersection of K with (gH)
in G/H S0 h € HnN(g) and therefore h=e.
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13. Consequently G is the product of (g) with K.
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Corollary: An abelian p-group is isomorphic to a product of cyclic
abelian p-groups.

Proof: We prove this by induction on the number of elements in
G. If G has p elements, it is cyclic. If G has p™ elements, use the
theorem to write G = (g) x K where g has maximal order among
the elements of G. Then K is a p-group of order smaller than the
order of GG, so it is a product of cyclic abelian p-groups.
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Classification of finite abelian groups - 3

Theorem: An abelian group G of order nm, where n_and m_
have w, is isomorphic to the product
G = Gy x Gp. where G, is the subgroup of elements of order
dividing n and G_m is the albgroup of elements of order dividing m.

Proof: G, and G,, are subgroups, and their intersection are the
elements consists of elements whose order divides both 7 and m, and
is therefore trivial. Write am + bn = 1. Let g be any element of G.
Then

g= gam+bn _ (gm)a(gn)b.
But ¢" has order dividing n since (¢"™)" = e, and ¢g" has order

dividing m for the same reason. Thus G, G,, = G. Therefore G is
the internal direct product of GG,, and G,,.
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Theorem: Any finite abelian group is a product of finite cyclic p
groups.

Proof: Let n be the order of G. Write n = pf' x --- x p;*. Then
by the previous theorem, G is the product of subgroups G; consisting

of elements of order a power of p;. Each such subgroup is an abelian
p; group and is therefore a product of cyclic abelian p; groups as
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