Matrix Groups

The general linear group

Definition: The general linear group $\operatorname{GL}_n(\mathbb{R})$ is the group of bijective linear transformations $T : \mathbb{R}^n \to \mathbb{R}^n$, with group operation given by composition of maps.

• identity:
$$T: \mathbb{R}^{n} \to \mathbb{R}^{n}$$
 by section
 $T: \mathbb{R}^{n} \to \mathbb{R}^{n}$ by section
 $T^{-1}: \mathbb{R}^{n} \to \mathbb{R}^{n}$ is in $GI_{n} L \mathbb{R}^{n}$
 $T^{-1}: \mathbb{R}^{n} \to \mathbb{R}^{n}$ is in $GI_{n} L \mathbb{R}^{n}$
 $T_{0}T^{-1} = Id = T^{-1} T$
 $T_{0}U(x) = U(x)$
 $T_{0}U(x) = (T_{0}U)(V(x))$
 $T_{0}U = U = U(x)$
 $T_{0}U = U = U(x)$

Equivalent definition: The general linear group $\operatorname{GL}_n(\mathbb{R})$ is the group of invertible $n \times n$ matrices with matrix multiplication.

$$T \longleftrightarrow A \qquad J muchold & A much ble
$$T(x) = A \times \qquad T \circ U \iff A B$$

$$V \Longleftrightarrow B$$

$$X = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 2 & 4 \end{pmatrix}$$$$

Equivalent definition: The general linear group $\operatorname{GL}_n(\mathbb{R})$ is the group of $n \times n$ matrices with nonzero determinant.

$$GL_{(R)} = \begin{cases} \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} a \end{pmatrix} \\ \begin{pmatrix} a \end{pmatrix} \end{pmatrix} = \begin{cases} \begin{pmatrix} a \\ c \end{pmatrix} \end{cases}$$

The special linear group

Definition: The special linear group $SL_n(\mathbb{R})$ is the subgroup of $GL_n(\mathbb{R})$ of matrices with determinant one.

Lemma: $\operatorname{SL}_n(\mathbb{R})$ is normal in $\operatorname{GL}_n(\mathbb{R})$ and the quotient group is \mathbb{R}^* .

First isomorphism therem,
det:
$$GL_n(R) \rightarrow R^*$$

 $(D det(g,g_2) = det(g,1)det(g_2)$
 $(D det(g,g_2) = det(g,1)det(g,1)det(g_2)$
 $(D det(g,g_2) = det(g,1)det(g,1)det(g_2)$
 $(D det(g,g_2) = det(g,1)det$

Orthogonal matrices

Definition: A matrix A is called orthogonal if $||Ax||^2 = ||x||^2$ for all vectors $x \in \mathbb{R}^n$.

Proposition: A is orthogonal if and only if $\underline{AA^t} = Id$ or, equivalently, if the rows (or columns) of A form an orthonormal set.

Sproe
$$||Ax||^2 = ||X||^2$$
 for all $x \in \mathbb{R}^n$.
 $||Ae|||^2 = |-||e||^2 for (-1) - - - on.$
 $||Ae|||^2 = 1$
 $\begin{pmatrix}a_{11} & a_{12} & a_{11} & a_{11}$

$$\|Ax\|^{2} = \|x\|^{2} \quad \{a \quad all \quad x \quad fln \\ A^{\dagger}A = id \\ A^{\dagger} = A^{-1} \\ AA^{\dagger} = id \\ rows \quad of \quad A \quad ae \quad orthonormal. \\ \\ Suppose \quad AA^{\dagger} = id. \\ \\ \|Ax\|^{2} = Ax \cdot Ax = t(Ax) \quad Ax = t(Ax) \\ \forall x = \begin{bmatrix} x \\ y \\ y \end{bmatrix}^{2} \\ tr = \begin{bmatrix} x \\ y \\ y \end{bmatrix}^{2} \\ tr = \begin{bmatrix} y \\ y \\ y \end{bmatrix}^{2} \\ tr = \begin{bmatrix} y \\ y \\ y \end{bmatrix}^{2} \\ tr = \begin{bmatrix} y \\ y \end{bmatrix}^{2} \\ tr \end{bmatrix}^{2} \\ tr \end{bmatrix}^{2} \\ tr = \begin{bmatrix} y \\ y \end{bmatrix}^{2} \\ tr \end{bmatrix}^$$

The orthogonal group

Definition: The orthogonal group $O_n(\mathbb{R})$ is the subgroup of $\operatorname{GL}_n(\mathbb{R})$ consisting of orthogonal matrices.

 $(AB)^{T}(AB) = id?$ $(AB)^{T}(AB) = id?$ $(AB)^{T}(AB) = id?$ $A^{T}(A^{T})^{T} = Id?$ $A^{T}(A^{T}) = A^{T}A$ $A^{T}(A^{T})$

Definition: The special orthogonal group $SO_n(\mathbb{R})$ is the subgroup of $O_n(\mathbb{R})$ consisting of matrices with determinant 1.

Proposition: $SO_n(\mathbb{R})$ is a normal subgroup of $O_n(\mathbb{R})$ of index 2. The quotient group is \mathbb{Z}_2 .

Geometry of the orthogonal group

 $SO_n(\mathbb{R})$ is the group of rigid rotations about the origin in \mathbb{R}^n .

 $SO_2(\mathbb{R})$ is abelian.

 $SO_3(\mathbb{R})$ is the group of rotations of the unit sphere.

Frames and orientation

A frame in \mathbb{R}^n is an ordered orthonormal basis Definition:

 u_1,\ldots,u_n . Frame in IR3 创分 ['o] ['o] ['o] 'j, î, k

A matrix whose columns are the vectors u_i is orthogonal and so has

determinant ± 1 . μ_{1} μ_{2} μ_{3} \cdots μ_{3} det $\mathcal{U} = \pm 1$.

A frame is *positively oriented* if the determinant of this matrix is 1.

$$J, i, K$$

$$J, i, K$$

$$J = -1$$

$$J = -1$$

In \mathbb{R}^3 , positively oriented means "right-handed" so $u_2 \times u_3$ points in the same direction as u_1 where \times is the vector cross product.

Proposition: SO_n preserves positive oriented frames. If h is in O_n and not SO_n , it changes a positively oriented frame to a negatively oriented one, and vice versa.

 $A \in SO_{n}$ $A \in SO_{n}$ $A = \begin{pmatrix} u_{1} & u_{2} & \cdots & u_{n} \\ u_{n} & u_{2} & \cdots & u_{n} \\ u_{n} & u_{n} \end{pmatrix} = \begin{pmatrix} Au_{n} & Au_{n} \\ Au_{n} \end{pmatrix}$ $A = \begin{pmatrix} Au_{n} & Au_{n} \\ Au_{n} \end{pmatrix}$ $A = \begin{pmatrix} Au_{n} & Au_{n} \\ Au_{n} \end{pmatrix}$

Permutations and orthogonal vectors

Let σ be a permutation in S_n . Let T_{σ} be the linear map that permutes the basis vectors \mathbf{e}_i according to how σ permutes the indices.

 $e_{1,----,e_{N}}$ (i, j, k) $\sigma \in S_{n}$ (i, j, k) $\sigma = (12)$ $\sigma (e_{1}) = e_{\sigma(1)} = e_{2}$ $\sigma (e_{2}) = e_{\sigma(2)} = e_{1}$ $\sigma (e_{1}) = e_{1}$ $\sigma (e_{2}) = e_{\sigma(2)} = e_{1}$ $\sigma (e_{1}) = e_{2}$ $(\hat{i}, \hat{j}, \hat{k})$ σ(e,)=e≥ σ(e,)=ey σ(<2)=e≥ The matrix of T_{σ} is an orthogonal map. o(es)e, To is orthogonal. MU a perm motivit 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 If σ and σ' are two permutations then $T_{\sigma\sigma'} = T_{\sigma}T_{\sigma'}$. 5-518 $f: S_n \longrightarrow O_n$ $\mathcal{O}_1\mathcal{O}_2 - \mathcal{T}_{\mathcal{O}_1\mathcal{O}_2} = \mathcal{T}_{\mathcal{O}_1} \circ \mathcal{T}_{\mathcal{O}_2}$ $T_{\sigma_1\sigma_2}(e_i) = e_{\sigma_1\sigma_2}(e_i) =$ $T_{\sigma_1} \circ T_{\sigma_2}(e_1) = T_{\sigma_1} \left(e_{\sigma_2}(e_1) \right) = e_{\sigma_1 \sigma_2}(e_1) = e_{\sigma_1 \sigma_2}(e_1)$

Proposition: The determinant of T_{σ} is the sign of σ .

$$f: S_n \longrightarrow C_n$$

$$det(f(\sigma)) = \pm 1$$

$$Proof: If \sigma is a transposible
$$T_{\sigma} = idenly \text{ with two columns switched}$$

$$and so det(T_{\sigma}) = -1.$$

$$\sigma = \sigma_i \cdots \sigma_m \quad all \sigma_i \text{ transposibles}$$

$$det(T_{\sigma}) = det(T_{\sigma_i} \cdots \sigma_m) = det(T_{\sigma_i}) \cdots du(T_{\sigma_n})$$

$$= (-1)^n$$$$