
Matrix Groups

The general linear group

Definition: The general linear group GLn(R) is the group of bijec-
tive linear transformations T : Rn æ Rn, with group operation given
by composition of maps.

Equivalent definition: The general linear group GLn(R) is the group
of invertible n ◊ n matrices with matrix multiplication.

Equivalent definition: The general linear group GLn(R) is the group
of n ◊ n matrices with nonzero determinant.
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The special linear group

Definition: The special linear group SLn(R) is the subgroup of
GLn(R) of matrices with determinant one.

Lemma: SLn(R) is normal in GLn(R) and the quotient group is
Rú.
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Orthogonal matrices

Definition: A matrix A is called orthogonal if ÎAxÎ2 = ÎxÎ2 for
all vectors x œ Rn.

Proposition: A is orthogonal if and only if AA
t = Id or, equivalently,

if the rows (or columns) of A form an orthonormal set.
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The orthogonal group

Definition: The orthogonal group On(R) is the subgroup of
GLn(R) consisting of orthogonal matrices.

Definition: The special orthogonal group SOn(R) is the subgroup
of On(R) consisting of matrices with determinant 1.

Proposition: SOn(R) is a normal subgroup of On(R) of index 2.
The quotient group is Z2.
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Geometry of the orthogonal group

SOn(R) is the group of rigid rotations about the origin in Rn.

SO2(R) is abelian.

SO3(R) is the group of rotations of the unit sphere.
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Frames and orientation

Definition: A frame in Rn is an ordered orthonormal basis
u1, . . . , un.

A matrix whose columns are the vectors ui is orthogonal and so has
determinant ±1.

A frame is positively oriented if the determinant of this matrix is 1.
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In R3, positively oriented means “right-handed” so u2 ◊ u3 points in
the same direction as u1 where ◊ is the vector cross product.

In R2, positively oriented means that the pair of vectors are rotated
from i and j (in that order).

Proposition: SOn preserves positive oriented frames. If h is in On

and not SOn, it changes a positively oriented frame to a negatively
oriented one, and vice versa.
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Permutations and orthogonal vectors

Let ‡ be a permutation in Sn. Let T‡ be the linear map that permutes
the basis vectors ei according to how ‡ permutes the indices.

The matrix of T‡ is an orthogonal map.

If ‡ and ‡
Õ are two permutations then T‡‡Õ = T‡T‡Õ.
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Proposition: The determinant of T‡ is the sign of ‡.
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