
Quick review of linear algebra
Matrices yield linear maps

A map T : Rn æ Rm is linear if f (ax + by) = af (x) + bf (y) for all
x, y œ Rn and all a, b œ R.

An m ◊ n matrix A yields a linear map from Rn to Rm via matrix
multiplication x ‘æ Ax.

Examples

• The identity matrix/identity linear map from Rn to itself.

• The zero map from Rn æ Rm

• The rotation matrix M(◊) =
Q

ca
cos(◊) ≠ sin(◊)
sin(◊) cos(◊)
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Every linear map comes from a matrix

Given a linear map T : Rn æ Rm, we can associate to it an m ◊ n
matrix A with entries (aij) by computing

T (ej) =
mÿ

i=1
aijfi

where ej and fi are the n- and m- dimensional column vectors with
a one in position j (resp. i) and zeros elsewhere.
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Matrix Multiplication is composition of linear maps

If T : Rn æ Rm and V : Rm æ Rp are linear maps with associated
matrices A and B, then the matrix associated to the composition
TV is the matrix product AB.
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A linear map is bijective if its matrix is invertible

• If T : Rn æ Rn is bijective then its inverse is also linear and
the associated matrix is the inverse matrix A≠1. Conversely
if the associated matrix is invertible then T is bijective. In
particular the inverse of a bijective linear map is bijective.

A matrix is invertible if and only if it has nonzero de-
terminant
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The inner product (dot product)

Definition: The Euclidean inner product on Rn is the dot product

(
nÿ

i=1
aiei) · (

nÿ

i=1
biei) =

nÿ

i=1
aibi.

If x, y œ Rn this is also written Èx, yÍ.
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Properties of the inner product

Proposition: The inner product is:

• symmetric, so Èx, yÍ = Èy, xÍ

• bilinear, so Èx, y + zÍ = Èx, yÍ + Èx, zÍ and Èax, yÍ = aÈx, yÍ
for x, y œ Rn and a œ R.

• positive definite, so Èx, xÍ Ø 0 for all x and is zero only if x = 0.
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Given a vector x, the quantity x · x = ÎxÎ2 is called the norm of x;
geometrically it is the length of the vector x.

Given two vectors x and y, the quantity (x ≠ y) · (x ≠ y) = Îx ≠ yÎ2

is the square of the Euclidean distance between x and y.
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