Internal direct products

Suppose G = H x K is a direct product.

« H and K are (isomorphic to) subgroups of G.
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« These coples of H and K commute with one another
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« The only element these two subgroups have in common is the
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Proposition: Suppose that G is a group and that H and K are
two subgroups of G such that:

C HOK = {e} ()

« Every g € G can be written g = hk for some h € H and some (<)
k € K. (This is abbreviated G = HK).

« H and K commute, so that hk = khforallh € H and k € K. (%)
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Then the map
f:Hx K—=dG

that sends f(h, k) = hk is an isomorphism.

In this case we say that G is the “internal direct product” of H and
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Example
We know that Zq, is isomorphic to Zy X Zs3.

Let H =0,3,6,9} be the subgroup generated by 3 and let K =
{0,4, 8} be the subgroup generated by 4.

« H is isomorphic to Z4 and K is isomorphic to Zs.
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Example

Consider Dy, the symmetries of the regular hexagon. This group is
generated by a rotation r and a reflection s, so that r has order 6, s

has order 2, and srs = r—1.

o Let H =\{e/r*} and K =\{e,r? r%, s,r%s,r1s). Then Dg is
: the internal direct product of H and K.
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« H is isomorphic to Zs and K is isomorphic to S3, so Dg is
isomorphic to Zy X Ss.



Example

S3 is not an internal direct product of non-trivial subgroups.
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