
Introduction to Lagrange’s Theorem
Theorem: Let G be a finite group and H a subgroup of G. Then the number of
elements in H is a divisor of the number of elements in G.

Examples
Let G be the symmetries of the equilateral triangle. G has 6 elements. What
are its subgroups?
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Let G be the group Z12. G has 12 elements. What are its subgroups?
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Let G be the symmetric group on 4 elements. What are the orders of di�erent
permutations?

What about the subgroup A4?

The symmetries of the square (the dihedral group D4) is contained in S4.
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