
Every permutation is a product of transposi-
tions
A transposition is a cycle of length 2.

Proposition: Every permutation can be written (in many ways)
as a product of transpositions. (The identity is a product of zero
transpositions).

Proof: It su�ces to show that a cycle is a product of transpositions.
For that:

(a1a2 · · · an) = (a1an)(a1an≠1)(a1an≠2) · · · (a1a4)(a1a3)(a1a2)

Remark: Any list can be sorted by repeatedly exchanging two
elements.

13524 |
13254 | (34)
12354 | (23)(34)
12345 | (45)(23)(34)
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Even and odd permutations
Theorem: Suppose the identity is written as a product of r trans-
positions:

e = ·1·2 · · · ·r.

Then r is an even number.

Proof:
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Theorem: Let ‡ œ Sn be a permutation. Then either every ex-
pression of ‡ as a product of transpositions has an even number
of transpositions, or every such expression has an odd number of
transpositions. In the first case ‡ is called an even permutation, in
the second it is called odd.

Proof:
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The Alternating Group
Definition: The subset of Sn consisting of even permutations is a
subgroup called the alternating group An. It has n!/2 elements.
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The group A4
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