
Definition of a Group
A group G is a set together with a binary operation that satisfies

certain properties. The book calls the binary operation a law of
composition.

Binary operations

Formally speaking, a binary operation on G is a function

m : G ◊ G æ G

.

But we often write binary operations with operators like + or ¶.

• plus : Z ◊ Z æ Z defined by plus(x, y) = x + y.

Or sometimes we don’t write anything and we just put symbols next

to each other, as for multiplication:

• times : Z ◊ Z æ Z defined by times(x, y) = xy.

The key thing is that a binary operation on a set G takes two elements

of G and gives you back a new one.
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Axioms
Definition: If G is a set with a binary operation (which we will

write here as if it were multiplication), then G is a group provided

that:

• The binary operation is associative, meaning that, for any

x, y, z œ G, we have (xy)z = x(yz).

• G has an identity element, meaning that there exists an element

e œ G so that ex = xe = x for all x œ G.

• Every element of G has an inverse, meaning that, for all x œ G,

there exists y œ G such that xy = yx = e.

Definition: If, in addition to these axioms, the binary operation

also satisfies the condition that, for all x, y œ G, xy = yx, then G is

said to be an abelian group.
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The set Z of integers with addition is a group.

The set Q of rational numbers with addition is
a group.

The set R of real numbers with addition is a
group.
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The integers mod N with addition are a group.
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The symmetries of an equilateral triangle are
a group.
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