Definition of a Group

A group G is a set together with a binary operation that satisfies
certain properties. The book calls the binary operation a law of
composition.

Binary operations

Formally speaking, a binary operation on G is a function
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But we often write binary operations with operators like + or 0. w §(%)=%"
xeg §2IST.

« plus:Z x Z — Z defined by plus(z,y) =z + .
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Or sometimes we don’t write anything and we just put symbols next

to each other, as for multiplication:
« times : Z X Z — Z defined by times(x,y) = zy.

The key thing is that a binary operation on a set GG takes two elements
of G and gives you back a new one.



Axioms

Definition: If G is a set with a binary operation (which we will

write here as if it were multiplication), then G is a group provided

that: XA

« The binary operation is associative, meaning that, for any
r,y,2 € G, we have (zy)z = x(yz). % xy2

* G has an identity element, meaning that there exists an element
66Gsothatex—xe—xforalleG

. Every clement of G has an inverse, meaning that, for all x € G,
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there exists y € G such that xy = yr = e.
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Definition: If, in addition to these axioms, the binary operation

also satisfies the condition that, for all x,y € G, xy = yx, then G is

said to be an abelian group.
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The set Z of integers with addition is a group.
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The set Q of rational numbers with addition is
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The set R of real numbers with addition is a
group. R e Yoo .



The integers mod N with addition are a group.
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The symmetries of an equilateral triangle are
a group.
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