Set Proofs Continued

Set Proofs Continued

Inclusion

Basic principle: $A \subseteq B$ is equivalent to the statement $x \in A \implies x \in B$. One can prove this both directly and as $x \notin B \implies x \notin A$.

Proposition: Let
$$A = \{4x + 2 : x \in \mathbb{Z}\}$$
. Let $B = \{2x : x \in \mathbb{Z}\}$.
Then $A \subseteq B$.
 $A = \{24x + 2 : x \in \mathbb{Z}\}$
 $A = \{24x + 2 : x \in \mathbb{Z}\}$
 $A = \{24x + 2 : x \in \mathbb{Z}\}$
 $A = \{2x :$

More examples

Proposition: For all $k \in \mathbb{Z}$, let $A = \{n \in \mathbb{Z} : n | k\}$ and let $B = \{n \in \mathbb{Z} : n | k^2\}$. Then $A \subseteq B$. (Note: this is problem 3 on page 171.) Let A= {neZ: n|k} K is fixed at Ne beginning B= gneZ:nK2g For all $k \in \mathbb{Z}$, $n | K \Rightarrow n | K^2$ $K^2 = n^2 d^2 = n(nd^2)$ $K^2 = n^2 d^2 = n y$ where $y = nd^2$. $So n[K^2] = ny$ where $y = nd^2$. this shows $A = B_$ since nlk, K=nd.

More examples

Proposition: Suppose A, B, and C are sets. If $B \subseteq C$, then $A \times B \subseteq A \times C$. (This is problem 7 on page 171.) Suppose A, B, C are any sets. , f B EC, Hen AxB S AxC. If [xeB => xeC] Hen [xeAxB => xeAxC] Proof: Assume XEB=)XEC. (BEC). and we assume XEAXB. X= (a,b) where are A and bEB. We must show (a, b) & AxC. in other words, i FB, b) we must show that (a,b) = (a',c') where $a' \in A$ SILE BEB, BEC hy hypothesis BSC. Thefre a'=a

One more

Proposition: Let A and B be sets. Prove that $A \subseteq B$ if and only if $A - B = \emptyset$. (This is problem 21 on page 171.) A-B= SxEA: X&B) XEA-B (=) XEA and X&B A-B= \$ <> the does not exist x such that XEA and X&B NOT [there exists x such that XCA and X&B] For all X, X&A or XEB NOT (XGA and X&B) Forall X, X&A or XEB. ASB (hall x, XEA =) XER For alx (XEA =) x = B) (XEB or NOT X A)