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Inclusion

Basic principle: A ™ B is equivalent to the statement

x œ A =∆ x œ B. One can prove this both directly and as

x ”œ B =∆ x ”œ A.

Proposition: Let A = {4x + 2 : x œ Z}. Let B = {2x : x œ Z}.

Then A ™ B. n.ee
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More examples

Proposition: For all k œ Z, let A = {n œ Z : n|k} and let

B = {n œ Z : n|k2}. Then A ™ B. (Note: this is problem 3 on page

171.)
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More examples

Proposition: Suppose A, B, and C are sets. If B ™ C , then

A ◊ B ™ A ◊ C . (This is problem 7 on page 171.)
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One more

Proposition: Let A and B be sets. Prove that A ™ B if and only if

A ≠ B = ÿ. (This is problem 21 on page 171.)
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