Set Proofs

Elements of sets

Many types of theorems can be expressed as questions about the relationship between sets. Sometimes it's a question of membership.

Theorem: For any natural numbers *a* and *b* there exist integers *k* and *l* such that

$$gcd(a, b) = ak + bl.$$

Theorem: Let a and b be natural numbers, and let $\underline{A} = \{ \underline{ax + by : x, y \in \mathbb{Z} } \}$. Then $\underline{gcd}(\underline{a}, \underline{b}) \in \underline{A}$. $gcd(\underline{a}, \underline{b}) = a \times by$ for some $x, y \in \mathbb{Z}$.

More examples

General situation: $A = \{ x \in S : P(x) \text{ is true} \}$. Then $x \in A \Leftrightarrow (x \in S) \land P(x)$.

► Let $A = \{3x + 2 : x \in \mathbb{Z}\}$. Then $14 \in A$. 3(-3)+2 = -7, $15 \quad 14 = 3x+2$ for some $x \in \mathbb{Z}$? 3(-2)+2 = -4, 12 = 3x, y = be cause 3(-1)+2 = -1, 4 = -x, 14 = 3(4)+2. $2 \quad 13 = 3x+2$, $x = 11/3 \in \mathbb{Z}$. 13 = 3x+2, $x = 11/3 \in \mathbb{Z}$.

• Let $A = \{3x + 2 : x \in \mathbb{Z}\}$. If $x \equiv 2 \pmod{3}$, then $x \in A$. *Rocall:* $X \cong 2 \mod 3$ means x-z is divisible by 3. x-2 = 3y for some integer 9. X = 3y+2 for some integer 9. $50 \quad X \in A$

More examples

Let B be the set of $X \in \mathcal{P}(\mathbb{N})$ such that, for all $x \in X$ and $y \in X$, |x - y| < 2.

 $\mathsf{Is} \{-1,2\} \in B? \mathsf{Is} \{\mathsf{III},\mathsf{IIII},\mathsf{IIII,\mathsf{III},\mathsf{III},\mathsf{III},\mathsf{III},\mathsf{III},\mathsf{III},\mathsf{III},\mathsf{III},\mathsf{$ B= <u>{Xep(w)</u>: frall x, yeX, [x-y]<2. $\{-1,2\} \in \mathbb{B}^2$; $\mathbb{P}(N) = \{\text{subsets of } N\}$ is $\{-1,2\} \in \mathbb{P}(N) ? \underbrace{NO}_{-1} \in N$. 15 $\{2,3\}$ in He at B? $\{2,3\} \in \mathcal{P}(\mathcal{N})$? 1x~y]