Set Proofs

Elements of sets
Many types of theorems can be expressed as questions about the relationship between sets. Sometimes it's a question of membership.

Theorem: For any natural numbers a and b there exist integers k and / such that

$$
\operatorname{gcd}(a, b)=a k+b l
$$

Theorem: Let a and b be natural numbers, and let $\underline{A}=\{a x+b y: x, y \in \mathbb{Z}\}$. Then $\operatorname{gcd}(a, b) \in \underline{A}$.

$$
\operatorname{gcd}(a, b)=a x+b y \text { for save } x, y \in \mathbb{Z}
$$

More examples
General situation: $A=\{\otimes \in S: P(x)$ is true $\}$. Then

$$
x \in A \Leftrightarrow(x \in S) \wedge P(x)
$$

Let $A=\{3 x+2: x \in \mathbb{Z}\}$. Then $14 \in A$.

$$
\begin{aligned}
& 3(-3)+2=-7, \quad \text { is } 14=3 x+2 \text { for some } x+\mathbb{Z} \text { ? } \\
& 3(-2)+2=-4 \\
& 12=3 x \\
& 3(-1)+2=-1 \\
& \begin{array}{rlrl}
1 & \text { SeA. Because } & 14=3(4) \\
\text { s, } & 13=3 x+2 & x=11 / 3 \& \mathbb{Z} .
\end{array}
\end{aligned}
$$

Let $A=\{3 x+2: x \in \mathbb{Z}\}$. If $x \equiv 2(\bmod 3)$, then $x \in A$.
Recall: $x \equiv 2 \bmod 3$ means $x-2$ is divisible by 3 .
$x-2=3 y$ for come integer y. $x=3 y_{x}^{y+2}$ for care integer y

More examples

- Let B be the set of $X \in \mathcal{P}(\mathbb{N})$ such that, for all $x \in X$ and $y \in X,|x-y|<2$.
Is $\{-1,2\} \in B$? Is $\{2,3\}$

$$
\begin{array}{ll}
\text { Is }\{-1,2\} \in B ? \text { Is } & \{2,3\} \\
B=\left\{\frac{x \in f(w):}{} \text { fr all } x, y \in X_{v} \quad|x-y|<2\right\}
\end{array},
$$

$\{-1,2\} \in B ? \quad Q(N)=\{$ subsets of $N\}$.

$$
\text { is }\{-1,2\} \in f(N) ? N O-1 \notin \mathbb{N} \text {. }
$$

is $\{2,3\}$ in the at B ?

$$
\{2,3\} \in P(\mathbb{N})
$$

x	y	$\mid x-y$	
2	2	p	<2
2	3	1	<2
3	2	1	<2
3	3	0	<2

$$
\begin{aligned}
& \{1,2,3,4\} \in B ? \\
& \{1,2,3,4\} \subseteq \mathbb{N} \text { so } \begin{array}{l}
\text { it is an element } \\
\\
\quad \text { of } 8(\mathbb{N}) . \\
|4-1|=3>2 \text { so }\{1,2,3,4\}
\end{array}
\end{aligned}
$$

does not have the property that $|x-y|<2$ for all $x, y \in X$.

