
Set Proofs
 



Elements of sets
Many types of theorems can be expressed as questions about the
relationship between sets. Sometimes it’s a question of membership.
Theorem: For any natural numbers a and b there exist integers k
and l such that

gcd(a, b) = ak + bl .

Theorem: Let a and b be natural numbers, and let
A = {ax + by : x , y œ Z}. Then gcd(a, b) œ A.
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More examples
General situation: A = {x œ S : P(x) is true}. Then

x œ A … (x œ S) · P(x).

I Let A = {3x + 2 : x œ Z}. Then 14 œ A.

I Let A = {3x + 2 : x œ Z}. If x © 2 (mod 3), then x œ A.
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More examples
I Let B be the set of X œ P(N) such that, for all x œ X and

y œ X , |x ≠ y | < 2.
Is {≠1, 2} œ B? Is {0, 1}?Eggs 2,3
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