uniqueness proofs

Uniqueness Proofs

Claiming something is "unique" means there is only one thing of that type.

Proposition: There is a unique real number a such that $a>0$ and $a^{2}=1$.

There are two claims here:

- There exists a real number a such that $a^{2}=1$ and $a>0$.
- There is only one real number with these properties.

Uniqueness proofs
Proofs typically go like this.
Theorem: There exists a unique x such that $P(x)$ is true.
Proof: First, we show that there is an x such that $P(x)$ is true. Now suppose that u and v are two things such that $P(u)$ and $P(v)$ are true. Then we show that $u=v$.

Prop. The exists a unique a such that $a>0$ and $a^{2}=1$. Proof. First observe that $a=1$ is pecten than geo and $a^{2}=1=1^{2}$ satisfies $a^{2}=1$. So at lest are a with desived property exists.

We show uniqueness. Suppose $a^{2}=1$. Ten $a^{2}-1=0$ or $(a+1)(a-1)=0$. Terefue $a=+1$ or $a=-1$. If $a>0$, then $a=+1$ is the only solution.

More Euclid's Algorithm

Proposition: Suppose a and b are natural numbers. Then there exists a unique $d \in \mathbb{N}$ so that m is a multiple of d if and only if $m \equiv a x+$ by for some $x, y \in \mathbb{Z}$.

Notice the logical structure here. We must show:

- there is (at least one) d that makes the if and only if statement " m is a multiple of d if and only if $m=a x+$ by for some $x, y \in \mathbb{Z}$ " true.
- then show that there is at most one d that has this property.

Proposition: Suppose a and b are natural numbers. Then there exists a unique $d \in \mathbb{N}$ so that m is a multiple of d if and only if $m=a x+$ by for some $x, y \in \mathbb{Z}$.
© Show there is a d so that
Hen

$$
\begin{gathered}
m \text { is a multi plo of } \\
d \\
U \\
m=a x+b y \\
m=a x+b y \\
W \\
m \text { is a multple of d }
\end{gathered}
$$

(2) Here is only are such.

Step 1A: Let $d=\operatorname{gcd}(a, b)$.
The goal is to show that

$$
\begin{aligned}
& 1=7+3(-2) \\
& 5=7.5+3(-10)
\end{aligned}
$$

$$
d \mid m \Leftrightarrow m=a x+\text { by for some } x, y \in \mathbb{Z}
$$

- We will show that d makes the if and only if statement true.
- First we show that $d \mid m \Longrightarrow m=a x+$ by for some x and y.
- Suppose that m is a multiple of d, so $m=d g$.
- We know that $d=a k+b l$, so $\underline{m}=\underline{d g}=a(g k)+\underline{b(g l)}$.
- Choosing $x=g k$ and $y=g /$ we see that there exist x, y in \mathbb{Z} so that $m=a x+b y$

Step 1B:

Remember:

$$
\begin{aligned}
d & =g c \partial(a, b) \\
d \mid m \Leftrightarrow m & =a x+\text { by for some } x, y \in \mathbb{Z}
\end{aligned}
$$

- Now we show that $m=a x+$ by for some $x, y \in \mathbb{Z}$ implies that $d \mid m$.
- We know that $a=u d$ and $b=v d$ for some u and v in \mathbb{N}.
- Therefore $m=u d x+v d y=d(u x+v y)$ so m is a multiple of d.

Step 2A:

- Now we must show that $d=\operatorname{gcd}(a, b)$ is the only integer g that makes the if and only if statement

$$
\underset{d^{\prime \prime}}{g} \mid m \Leftrightarrow m=a x+\text { by for some } x, y \in \mathbb{Z}
$$

of the theorem true. Our strategy is to suppose we have another integer d^{\prime} that has this property, and then prove $d \geq d^{\prime}$ and $d \leq d^{\prime}$. So suppose that d^{\prime} makes the if and only if statement true.

- Now we show $d^{\prime} \leq d$.

$$
\begin{aligned}
a= & =a \cdot 1+b \cdot 0 \\
& \Rightarrow d^{\prime} \mid d
\end{aligned}
$$

- The if and only if statement tells us that $d^{\prime} \mid a$ since $b=a .0+b .1$ $a=a(1)+b(0)$ and $d^{\prime} \mid b$ since $b=a(0)+b(1) . \quad \Rightarrow d^{\prime}(b$
- Therefore d^{\prime} is a common divisor of a and b, and so $d^{\prime} \leq d$. since $d=\operatorname{gcd}(a, b)$

Step 2B:

- Next we show $d \leq d^{\prime}$.
- Since $d^{\prime} \mid d^{\prime}$, we can find x and y so that $d^{\prime}=\underline{a x+b y}$.
- Since $a=u d$ and $b=v d$ for some integers u and v, we get $d^{\prime}=d(u x+b y)$ so $d \mid d^{\prime}$ so $d^{\prime} \geq d$.
- Combining Steps 2A and 2B we see that $d^{\prime}=d$.

