uniqueness proofs

Uniqueness Proofs

Claiming something is "unique" means there is only one thing of that type.

Proposition: There is a unique real number *a* such that a > 0 and $a^2 = 1$.

There are two claims here:

- There exists a real number *a* such that $a^2 = 1$ and a > 0.
- ► There is *only one* real number with these properties.

Uniqueness proofs

Proofs typically go like this.

Theorem: There exists a unique x such that P(x) is true.

Proof: First, we show that there is an x such that P(x) is true. Now suppose that u and v are two things such that P(u) and P(v) are true. Then we show that u = v.

Prop. The exists a unique a such that a to and
$$a^2 = 1$$
.
Proof. First observe that $a \ge 1$ is green than give
and $a^2 = 1 = i^2$ satisfies $a^2 = 1$. So at least one a
with desired property exists.
So We show uniqueness. Suppose $a^2 = 1$. Then
 $a^2 - i = 0$ or $(a + i)(a - i) = 0$. Therefore $a = \pm 1$
 $a^2 - i = 0$ or $(a + i)(a - i) = 0$. Therefore $a = \pm 1$
 $a^2 - i = 0$ or $(a + i)(a - i) = 0$. Therefore $a = \pm 1$
 $a^2 - i = 0$ or $(a + i)(a - i) = 0$. Therefore $a = \pm 1$
 $a^2 - i = 0$ or $(a + i)(a - i) = 0$. Therefore $a = \pm 1$
 $a^2 - i = 0$ or $(a + i)(a - i) = 0$. Therefore $a = \pm 1$
 $a = \pm 1$. So $a = \pm 1$ is the only solution.

More Euclid's Algorithm

Proposition: Suppose *a* and *b* are natural numbers. Then there exists a unique $d \in \mathbb{N}$ so that <u>*m* is a multiple of d</u> if and only if $\underline{m = ax + by}$ for some $x, y \in \mathbb{Z}$.

Notice the logical structure here. We must show:

- ► there is (at least one) d that makes the if and only if statement "m is a multiple of d if and only if m = ax + by for some x, y ∈ Z" true.
- then show that there is at most one d that has this property.

Proposition: Suppose *a* and *b* are natural numbers. Then there exists a unique $d \in \mathbb{N}$ so that m is a multiple of d if and only if m = ax + by for some $x, y \in \mathbb{Z}$. m is a mult ple of O Show there is a cl so that Moart by m=ax+by Hen Mis amiltale gd 1

Step 1A: Let $d = \operatorname{gcd}(a, b)$.

The goal is to show that

$$d|m \Leftrightarrow m = ax + by$$
 for some $x, y \in \mathbb{Z}$

We will show that d makes the if and only if statement true.

- First we show that $d|m \implies m = ax + by$ for some x and y.
- Suppose that *m* is a multiple of *d*, so m = dg.
- We know that d = ak + bl, so $\underline{m} = d\underline{g} = a(\underline{gk}) + \underline{b(gl)}$.
- Choosing x = gk and y = gl we see that there exist x, y in Z so that m = ax + by

Step 1B:

Remember:

$$d|m \Leftrightarrow m = ax + by \text{ for some } x, y \in \mathbb{Z}$$

- Now we show that m = ax + by for some x, y ∈ Z implies that d|m.
- We know that a = ud and b = vd for some u and v in \mathbb{N} .
- Therefore m = udx + vdy = d(ux + vy) so m is a multiple of d.

Step 2A:

Now we must show that d = gcd(a, b) is the only integer g that makes the if and only if statement

$$g|m \Leftrightarrow m = ax + by \text{ for some } x, y \in \mathbb{Z}$$

of the theorem true. Our strategy is to suppose we have another
integer d' that has this property, and then prove $d \ge d'$ and $d \le d'$.
So suppose that d' makes the if and only if statement true.

Now we show
$$d' \le d$$
.
 $a = a \cdot i + b \cdot 0$
 $a = d' \mid d$

- The if and only if statement tells us that d'|a since $b = a \cdot a \cdot b' \cdot a = a(1) + b(0)$ and d'|b since b = a(0) + b(1). If $a \cdot a \cdot b' \cdot b' = a \cdot a \cdot b' \cdot b' \cdot b' = a(0) + b(1)$.
- Therefore d' is a common divisor of a and b, and so $d' \leq d$.
 Since d = gcd(a,b)

Step 2B:

- Next we show $d \leq d'$.
- Since d'|d', we can find x and y so that d' = ax + by.
- Since a = ud and b = vd for some integers u and v, we get d' = d(ux + by) so d|d' so d' ≥ d.
- Combining Steps 2A and 2B we see that d' = d.