If and only if

If and only if statements
A theorem that asserts that two statements P and Q are equivalent requires you to prove both $P \Longrightarrow Q$ and $Q \Longrightarrow P$.
$(P \Leftrightarrow Q)$ is equivalent ω

$$
P \Rightarrow Q \text { and } Q \Rightarrow P \text {. }
$$

Chapter 7 exercise 3.

Proposition: If a is an integer, then a is even if and only if $a^{3}+a^{2}+a$ is even.

There are two claims:
a even implies $a^{3}+a^{2}+a$ is even.
$a^{3}+a^{2}+a$ is even implies a is even.
Each requires proof.

Proof: First we show that, if a is even, then $a^{3}+a^{2}+a$ is even. if a is even, then $a=2 k$ for some integer k.
Therefore $a^{3}+a^{2}+a=(2 k)^{3}+(2 k)^{2}+2 k$

$$
=8 k^{3}+4 k^{2}+2 k=2\left(4 k^{3}+2 k^{2}+k\right)
$$

Since we see that $a^{3}+a^{2}+a=2 m$ where

$$
m=4 k^{3}+2 k^{2}+1 c,
$$

we conclude that $a^{3}+a^{2}+a$ is even.

Now we show that, if $a^{3}+a^{2}+a$ is even, then a is even.
$a^{3}+a^{2}+a$ even $\Rightarrow a$ even
is the same as

$$
a \operatorname{\partial \partial \partial } \Rightarrow a^{3}+a^{2}+a \text { odd. }
$$

a odd means $a=2 k+1$ fa some $k \in \mathbb{Z}$.

$$
a^{3}+a^{2}+a=(2 k+1)^{3}+(2 k+1)^{2}+(2 k+1)
$$

$a^{3}+a^{2}+a$ is a sum of 3 sod numbers $a^{3}+a^{2}$ is even (sum of 2) $\left(a^{3}+a^{2}\right)+a$ is odd (odd+even)

Conduce that $a^{3}+a^{2}+a$ is odd.
Were shown $a^{3}+a^{2}+a$ is even $\Longleftrightarrow a$ is even.

Chapter 7, exercise 9.

Proposition: Suppose that a is an integer. Then 14|a if and only if $7 \mid a$ and $2 \mid a$.

Proof: First we suppose that $14 \mid a$ and show that both 7 and 2 divide a. Suppose $14 / a$. Then $a=14 k$ fa sone $k \in \mathbb{Z}$.

Therefore $a=7(2 k)$
So $7 / a$

$$
\text { and } \quad a=2(7 k)
$$

So a is a multiple of 2 .

Now we show that, if both 7 and 2 divide a, then 14 divides a.
Side remark: Suppose 6 and 4 divide a. Does $24 / a$?
No: consider 12. $6 / 12$ and $4 / 12$ but $24 / 12$.
We know by unique factorization into primes that a is a product of prime numbers and the list of such primes is determined by a. Also, 2 and 7 are prime numbers Since $2[a, 2$ must be ore of the primes dividing a. Sine 7 ($a, 7$ must be ore of those primes. So the prime fachrisitm of $a=2 \cdot 7$. (possibly other primes). Thenfue $14 / a$.

Equivalence

withe real number entries.

Theorem Suppose A is an $n \times n$ matrix. The following statements are equivalent:
\Rightarrow (a) The matrix A is invertible. A invar the le
(b) The equation $A \mathbf{x}=\mathbf{b}$, has a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$.
(c) The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(d) The reduced row echelon form of A is I_{n}. $A x=0$
(e) $\operatorname{det}(A) \neq 0$.
'..(f) The matrix A does not have 0 as an eigenvalue.

Figure 1: Theorem from page 149

Cycle proofs
If each step in the circle of implications:

$$
\begin{aligned}
& P_{1} \Rightarrow P_{2} P_{2} \Rightarrow P_{3} \quad P_{3} \Rightarrow P_{4} \cdots \quad P_{n} \Rightarrow P_{1} \\
& P_{1} \Rightarrow P_{2} \Rightarrow P_{3} \Longrightarrow \cdots \Rightarrow P_{n} \Rightarrow P_{1}
\end{aligned}
$$

is true, then all of the statements are equivalent - that is, all true or all false together.

Suppose P_{1} is true $P_{1} \Rightarrow P_{2}$ true Deans P_{2} true P_{2} the so P_{3} true....... P_{n} is true therefe P_{1} is true
If P_{1} is false, $P_{n} \Rightarrow P_{1}$ is the so P_{n} is $f_{\text {apse }}$ P_{n-1} is false... all statements are false.

