Proof by contradiction Proposition: My doy is not an elephant. Proof: Suppose my dog is an elephant. Elephants have trunks, so my dog has a trunk My dog does not has a trunk My dog does not have a trunk. This is a contradichu. So my doy is Not an elephant.

Proposition: The square root of 2 is not a rational number.

$$(\sqrt{2})^2 = 2.$$

 $\sqrt{2}$ a retained number means
 $\sqrt{2} = \frac{\alpha}{b}$ where $\alpha_s b$ are integers
 $and b \pm 0.$
 $2 = \frac{\alpha^2}{b^2}$
Therefore $\alpha^2 - 2b^2 = 0.$
If $\sqrt{2}$ is retained then $\alpha^2 - 2b^2 = 0$ has
 α solution where $\alpha_s b \in \mathbb{Z}$ and $b \pm 0.$

Lemma: If a^2 is even, then <u>a</u> is even. $(a \in \mathbb{Z})$, $(\neg Q \Rightarrow \neg P)$ Proof: We will prove the contrapositive, which says that if <u>a</u> is odd, then a^2 is odd. Suppose <u>a</u> is odd. Then a = 2k + 1 for some <u>k</u>. $\kappa \in \mathbb{Z}$. Therefore $a^2 = (2k + 1)^2 = 4k^2 + 4k + 1$ is odd. Suppose <u>a</u> is odd $a \circ \partial \partial = 0^2 \circ \partial \partial \circ$ $a \circ \partial \partial = 0^2 \circ \partial \partial \circ$ $a \circ \partial \partial = 0^2 \circ \partial \partial \circ$ **Proof of Proposition:** Suppose that $\sqrt{2}$ is a rational number. Then we can find positive integers *a* and *b* with $b \neq 0$ so that

$$2 = \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$$

We can choose a, b Not Bottl Even. We can pt $\frac{a}{b}$
In lowest terms. Either a or b is odd,
 $a^2 = 2b^2$
so a^2 is even
Lemna: fellows a is even.
So b is odd.
On the other hand, $a = 2m$ for some $m \in \mathbb{Z}$.
 $(2m)^2 = 2b^2$
 $4m^2 = 2b^2$
 $50 b^2$ is even.
By lemma b is even.
 $by lemma b is even.$
 $by lemma b is even.$

Proof of Proposition: Suppose that $\sqrt{2}$ is a rational number. Then we can find positive integers *a* and *b* with $b \neq 0$ so that

$$a^2 - 2b^2 = 0.$$

 $a_3 b$ at both positive (not gens).
Among all solutions, cloose ($a_{03}b_{0}$) where a_{0} is
 a_{0} small as possible.
 $a_{0}^{2} = 2b_{0}^{2}$ so a_{0}^{2} is even.
Lemma: a_{0} is even
 $a_{0} = 2m$ fit some $m \in \mathbb{Z}$.
 $4m^{2} = 2b_{0}^{2}$ $m < a_{0}$
 $2m^{2} = b_{0}^{2}$ b_{0}^{2} is even, so be is
 $2m^{2} = 4n^{2}$ $m_{1}N$ solves $a^{2} - 2b^{2}$
 $1m^{2} = 2n^{2}$ $m < a_{0}$.
Therefore we have a contradiction so $\sqrt{2}$ is not fatimed

Logical Structure of proof by contradiction

A contradiction is a statement of the form (C and ~ C) which is always false.

► The strategy of proof by contradiction is that if A ⇒ B is true, and B is false, then A is false. V2 is irretural.
 Proposition: P ⇒ Q.
 Ef q, b ac integers, and a²-2b²=0, then q=b=0.

Assume P is true.
$$a_1b \in T_1 a^{-1}b^2 = 0$$

► Assume (P and $\sim Q$) is true and NOT BOTH A, B are gero

$$P \text{ and } \sim Q \implies C \text{ and } \sim C$$
 Bis even
Bis odd

for some statement C.

- If (P and ~ Q) implies (C and ~ C) is a true implication yielding a false conclusion, then the hypothesis must be false.
 Therefore (P and ~ Q) is false.
- ▶ If (*P* and $\sim Q$) is false, and *P* is true then $\sim Q$ is false

$$\blacktriangleright Q$$
 is true. $a = b = 0$