Proof by contradiction
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Proposition: The square root of 2 is not a rational number.
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Lemma: If a2 is even, then a is even. [Q € ZX S(ra> ~P)

Proof: We will prove the contrapositive,ﬁich says that if a is odd,
then a2 is odd. Suppose a is odd. Then a = 2k + 1 for some k. ke Z,

" Therefore a2 = (2k +1)2 = 4k + 4k + 1 is odd.
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Proof of Proposition: Suppose that /2 is a rational number.
Then we can find positive integers a and b with b # 0 so that
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Proof of Proposition: Suppose that /2 is a rational number.
Then we can find positive integers a and b with b # 0 so that
a® —2b* = 0.
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Logical Structure of proof by contradiction

» A contradiction is a statement of the form (C and ~ C) which
is always false.

» The strategy of proof by contradiction is that if A = B is
true, and B is false, then A is false. Y2 s weahonef,
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» Assume (P and ~ @) is true and wer QsTH AB ove HAD
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for some statement C.
» If (P and ~ Q) implies (C and ~ C) is a true implication
yielding a false conclusion, then the hypothesis must be false.
» Therefore (P and ~ Q) is false.
» If (P and ~ Q) is false, and P is true then ~ @ is false
» Qs true. &=9o=o



