

Congruence

Definition: Let *n* be a natural number and let *a* and *b* be integers. We say that *a* and *b* are **congruent** modulo *n* if n|(a - b). We write this as $a \equiv b \pmod{n}$.

Some basic properties of congruences

Proposition: Let *n* be a natural number and let *a*, *b*, and *c* be integers. Congruence has the following properties:

A ≡ a (mod n). Prof: n | (a-a) or n | o because 0 = n.0.

 If a ≡ b (mod n) then b ≡ a (mod n). Pf: if a ≡ b modu then

$$n | (a-b) so a-b=kn$$
 $n | (a-b) so a-b=kn$
 $n | (a-b) so a-b=kn$
 $h | (b-a)$
 (Chapter 5, Problem B19)
 $n = 5$
 $\gamma = 2 \mod 5$
 $(\gamma - 2 = 5 \cdot 1)$
 $1 \otimes \gamma = 2 \otimes 3$
 $n \otimes d = 5$
 $(\gamma - 2 = 5 \cdot 1)$
 $1 \otimes \gamma = 2 \otimes 3$
 $n \otimes \gamma = 1 \otimes \gamma$
 $\beta = 2 \mod 5$
 $(\gamma - 2 = 5 \cdot 1)$
 $n = 1 \otimes 2 \mod 5$
 $(\gamma - 2 = 5 \cdot 1)$
 $n = 1 \otimes 2 \mod 5$
 $(\gamma - 2 = 5 \cdot 1)$
 $n = 1 \otimes 2 \mod 5$
 $(\gamma - 2 = 5 \cdot 1)$
 $n = 1 \otimes 2 \mod 5$
 $(\gamma - 2 = 5 \cdot 1)$
 $n = 1 \otimes 2 \mod 5$
 $n \otimes 2 = 1 \otimes 3 \otimes 7 \equiv 1 \otimes 3$

$$=2$$
 (s) and $2=132$ mods and so mods

More properties

Arithmetic Progressions.

What is
$$\{x : x \equiv a \pmod{n}\}$$
?
Fix ne and $\alpha \in \mathbb{Z}$.
 $\{x : x \equiv a \pmod{n}, x \in \mathbb{Z}\}$.
 $x \equiv a \mod n eans$ $x-a = k \cdot n$ for some integer k .
 $x \equiv a \mod n eans$ $x-a = k \cdot n$ for some integer k .
 $x \equiv a + kn$ $k \in \mathbb{Z}$.
 $n = 5 \quad a = 3$
 $\{x : x \equiv 3 \mod s\} = \{3 + 5k : k \in \mathbb{Z}\}$
 $\{x : x \equiv 3 \mod s\} = \{3 + 5k : k \in \mathbb{Z}\}$
 $\{x : x \equiv 3 \mod s\} = \{3 + 5k : k \in \mathbb{Z}\}$
 $\{x : x \equiv 3 \mod s\} = \{3 + 5k : k \in \mathbb{Z}\}$
 $x = a + kn$ $k \in \mathbb{Z}$.
 $x = a + kn$ $k \in \mathbb{Z}$.
 $n = 5 \quad a = 3$
 $\{x : x \equiv 3 \mod s\} = \{3 + 5k : k \in \mathbb{Z}\}$
 $x = a + kn$ $k \in \mathbb{Z}$.
 $x = a + kn$ $k \in \mathbb{Z}$.
 $n = 5 \quad a = 3$
 $\{x : x \equiv 3 \mod s\} = \{3 + 5k : k \in \mathbb{Z}\}$
 $n = 5k$
 $progression$
 $n = 5k$
 $n = 7 \mod 5$