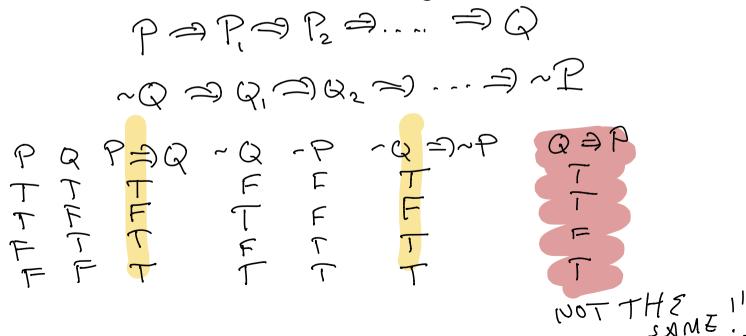
Proof by Contrapositive

The contrapositive.

Important: The contrapositive of an implication $\underline{P \implies Q}$ is $\sim \underline{Q} \implies \sim P$.

- ► If $\sim Q$ is false (meaning Q is true) the implication $\sim Q \implies \sim P$ is automatically true.
- So we assume ~ Q is true that is, that Q is false and try to conclude that ~ P is true meaning that P is false.



Contrapositive.

Proposition: Suppose that $x \in \mathbb{Z}$. Suppose $x^2 - 4x + 3$ is even. Then x is odd. $Q = \chi^2 - 4\chi + 3$ $a = 2m = x^{2} + x + 3 = (x - 1)(x - 3)$ HINT FOR DIRECT PROOF ~Q: X'K NOT 022 SO X is even. ~P X2-4X+3 is Not even SU X2-4X+3 is 000. Suppose X is even. Then X2-4x+3 is odd. (2m)2-4[2m]+3 e odd $\chi = 2m$

Contrapositive

Proof: Suppose *x* is even. Then x = 2m for some integer *m*. Therefore

$$B = x^{2} - 4x + 3 = 4m^{2} - 8m + \frac{3}{2} = 2(2m^{2} - \frac{4}{2}m + 1) + 1.$$

Since *B* is of the form 2k + 1 with $k = 2m^2 - 4m + 1$, we conclude that *B* is odd. Therefore *B* is not even. We have shown that if <u>x</u> is not odd, then *B* is not even, and therefore if *B* is even, *x* is odd.

Contrapositive

Proposition: Suppose that $x \in \mathbb{Z}$, that *a* is even, and that *b* is odd. If $x^2 - ax + b$ is even, then x is odd.) Assume x's even. Then x=2m for some m ~ Z_ Northe $\chi^2 - a x b = (am)^2 - 2am + b =$ $(2m)^2 - 2am = 4m^2 - 2am = 2(2m^2 - am)$ is even. Ь 6 000. (2m) = 2am the is an even integen plus an odd integer, so it's odd. $\forall x \in \mathbb{Z}, \forall a even \in \mathbb{Z}, \forall b odd \in \mathbb{Z}, x^2 - a x + b even =) x odd.$ R = (P = Q) R = (-Q = 1 - P)

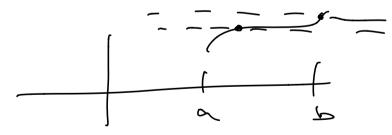
An example from calculus

Theorem: Let $f : [a, b] \to \mathbb{R}$ be a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f'(x) = 0 for all $x \in (a, b)$, then f is constant.

Proof: Not (For all $x \in (a, b)$, f'(x) = 0) \Leftrightarrow (there exists x, $f(x) \neq 0$)

We will show that if \underline{f} is not constant, then there is an $x \in [a, b]$ with $f'(x) \neq 0$.

Suppose that f(x) is not constant. Then there are two (different) points u and v in [a, b] such that f(u) ≠ f(v).



calculus cont'd

► $f: [u, v] \to \mathbb{R}$ is continuous on [u, v] and differentiable on (u, v). Therefore, by the mean value theorem, there is a point $c \in (u, v)$ such that $f'(c) = \underbrace{f(v) - f(u)}_{v - u}$.

Since $f(v) \neq f(u)$, the quantity on the right is not zero, and so $f'(c) \neq 0$.

► Therefore f'(x) is not zero for all x ∈ [a, b]. This proves our result.