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The contrapositive.
Important: The contrapositive of an implication P =∆ Q is
≥ Q =∆ ≥ P.
I If ≥ Q is false (meaning Q is true) the implication

≥ Q =∆ ≥ P is automatically true.
I So we assume ≥ Q is true – that is, that Q is false – and try to

conclude that ≥ P is true – meaning that P is false.
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Contrapositive.
Proposition: Suppose that x œ Z. Suppose x2 ≠ 4x + 3 is even.
Then x is odd.
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Contrapositive
Proof: Suppose x is even. Then x = 2m for some integer m.
Therefore

B = x2 ≠ 4x + 3 = 4m2 ≠ 8x + 3 = 2(2m2 ≠ 2m + 1) + 1.

Since B is of the form 2k + 1 with k = 2m2 ≠ 2m + 1, we conclude
that B is odd. Therefore B is not even. We have shown that if x is
not odd, then B is not even, and therefore if B is even, x is odd.
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Contrapositive
Proposition: Suppose that x œ Z, that a is even, and that b is odd.
If x2 ≠ ax + b is even, then x is odd.
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An example from calculus
Theorem: Let f : [a, b] æ R be a function that is continuous on
the closed interval [a, b] and di�erentiable on the open interval
(a, b). If f Õ(x) = 0 for all x œ [a, b], then f is constant.
Proof:
I We will show that if f is not constant, then there is an

x œ [a, b] with f Õ(x) ”= 0.
I Suppose that f (x) is not constant. Then there are two

(di�erent) points u and v in [a, b] such that f (u) ”= f (v).
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calculus cont’d
I f : [u, v ] æ R is continuous on [u, v ] and di�erentiable on

(u, v). Therefore, by the mean value theorem, there is a point
c œ (u, v) such that

f Õ(c) = f (v) ≠ f (u)
v ≠ u .

Since f (v) ”= f (u), the quantity on the right is not zero, and so
f Õ(c) ”= 0.

I Therefore f Õ(x) is not zero for all x œ [a, b]. This proves our
result.
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