Proof by Contrapositive



The contrapositive.

Important: The contrapositive of an implication P =— Q is
Q=P

» If ~ Q is false (meaning @ is true) the implication
~ = ~ P is automatically true.

» So we assume ~ Q is true — that is, that @ is false — and try to
conclude that ~ P is true — meaning that P is false.
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Contrapositive. =
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Proposition: Suppose that x € Z. Suppose >i— 4x + 3 is even.
Then x is odd. ‘
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Contrapositive

Proof: Suppose x is even. Then x = 2m for some integer m.
Therefore

B:x2—4x—|—3:4m2—8m+§:%(2m2—4m+1)+1.

Since B is of the form 2k + 1 with k = 2m® —4€m + 1, we conclude
that B is odd. Therefore B is not even. We have shown that if x is
not odd, then B is not even, and therefore if B is even, x is odd.
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Contrapositive a=4b =3,

Proposition:[Suppose that x €Z-that a is even, and that b is odd:‘
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An example from calculus

Theorem: Let f : [a, b] — R be a function that is continuous on
the closed interval [a, b] and differentiable on the open interval
(a,b). If f'(x) =0 for all x € {a, b), then f is constant.

Proof: NeT (For add xe (a0 FTA=0) £ (Heaenske x, S0 +o)

» We will show that if f is not constant, then there is an
x € [a, b] with '(x) # 0.

» Suppose that f(x) is not constant. Then there are two
(different) points u and v in [a, b] such that f(u) # f(v).

l [ [

] o [




calculus cont'd

» f:[u,v] — R is continuous on [u, v] and differentiable on

(u, v). Therefore, by the mean value theorem, there is a polmt
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Since f(v) # f(u), the quantity on the right is not zero, and so
f'(c) # 0.

» Therefore '(x) is not zero for all x € [a, b]. This proves our
result.



