Direct Proof

Direct Proof

From page 122 of the text

Proposition If $a, b, c \in \mathbb{N}$, then $(\underline{\operatorname{lcm}}(ca, cb)) = c \cdot \underline{\operatorname{lcm}}(a, b)$.

Proof. Assume $a, b, c \in \mathbb{N}$. Let $m = \operatorname{lcm}(ca, cb)$ and $n = c \cdot \operatorname{lcm}(a, b)$. We will show m = n. By definition, $\operatorname{lcm}(a, b)$ is a positive multiple of both a and b, so $\operatorname{lcm}(a, b) = ax = by$ for some $x, y \in \mathbb{N}$. From this we see that $n = c \cdot \operatorname{lcm}(a, b) = cax = cby$ is a positive multiple of both ca and cb. But $m = \operatorname{lcm}(ca, cb)$ is the smallest positive multiple of both ca and cb. Thus $m \le n$.

On the other hand, as $m = \operatorname{lcm}(ca, cb)$ is a multiple of both ca and cb, we have m = cax = cby for some $x, y \in \mathbb{Z}$. Then $\frac{1}{c}m = ax = by$ is a multiple of both a and b. Therefore $\operatorname{lcm}(a, b) \le \frac{1}{c}m$, so $c \cdot \operatorname{lcm}(a, b) \le m$, that is, $n \le m$. We've shown $m \le n$ and $n \le m$, so m = n. The proof is complete.

Figure 1: lcm proposition

The hidden part - check the definitions

Definition: Let *a* and *b* be positive integers. Then the least common multiple lcm(a, b) is the smallest positive integer *m* such that a|m and b|m.

G = 2, b = 3 lcm(2,3) is smallest positive integer such that 2|m and 3|m. m = 2x M = 3y $lcm(a,b) \leq ab$ m = 2x M = 3y Sometimes = G is a multiple of 2 and 3. Sometimes 2, 4, 6.... 3, 6, ... 3, 6, ... 48 is a common multiple. 48 is a common multiple. 24 is also a common multiple. 8,16,24

The hidden part II

Second, make sure the claim is clear. Look at some examples.

$$\int cm(ca,cb) = c \cdot lcm(a,b),$$

$$\int cm(2,3) = 6. \quad c=5$$

Prop says
$$\int cm(s,2,5\cdot3) = lcm(10,15) = 5 \cdot lcm(2,3) = 5.6 = 30$$

$$\int 0, 20,30 - 1 - -$$

$$\int 5, (30) - 1 - -$$

$$\int cm(b,8) = 24 \quad c=2. \quad lcm(12,16) = 2 \cdot lcm(6,8) =$$

$$2 \cdot 24 = 48 \cdot 48$$

$$\int 2 \cdot 24, 36 \cdot 46 - - -$$

$$\int 6, 32, (48 - - -)$$

The hidden part continued III - interpret the definition

Three ways of saying the same thing:

- $\begin{bmatrix} \bullet & m \\ \mathbf{x} & \text{is the smallest positive integer such that } a|m \text{ and } b|m \end{bmatrix}$
 - If x is a positive integer so that a|x and $\underline{b}|x$, then $x \ge \underline{\operatorname{lcm}(a, b)}$.
 - If x is a positive integer so that a|x and b|x, then $\int cm(a,b) \le x$.

The hidden part IV

Read the proof to understand it's structure, without worrying about the details.

Take the proof of the proposition apart

► Assume
$$a, b, c \in \mathbb{N}$$
. (a, b, c, are all positive)

Let $m = \operatorname{lcm}(ca, cb)$ and $n = \operatorname{clcm}(a, b)$. We will show that m = n. ($n \ge n \le 1$) $m \ge n \ge n \ge n \ge n$

- By definition, lcm(a, b) is a positive multiple of both a and b, so lcm(a, b) = ax = by for some x and y in N.
- From this we see that $\underline{n} = c \operatorname{lcm}(a, b) = cax = cby$ is a positive multiple of both *ca* and *cb*. Thus $m \leq n$.

Taking the proof apart

- On the other hand, as m = lcm(ca, cb) is a multiple of both caand *cb*, we have m = cax = cby for some $x, y \in \mathbb{Z}$. C=N. /
- Then $\frac{1}{c}m = ax = by$ is a multiple of both *a* and *b*.
- Therefore $\underline{\operatorname{lcm}(a,b)} \leq \frac{1}{c}m$ so $c\operatorname{lcm}(a,b) \leq m$, that is $n \leq m$.
- Since $m \le n$ and $n \le m$, we have m = n. The proof is complete.