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From page 122 of the text

Figure 1: lcm proposition
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The hidden part - check the definitions
Definition: Let a and b be positive integers. Then the least

common multiple lcm(a, b) is the smallest positive integer m such

that a|m and b|m. m
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The hidden part II
Second, make sure the claim is clear. Look at some examples.

Icm Ca Cbl c Lcmla b
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The hidden part continued III - interpret the definition
Three ways of saying the same thing:

I x is the smallest positive integer such that a|m and b|m
I If x is a positive integer so that a|x and b|x , then

x Ø lcm(a, b).

I If x is a positive integer so that a|x and b|x , then

lcm(a, b) Æ x .
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The hidden part IV
Read the proof to understand it’s structure, without worrying about

the details.



Take the proof of the proposition apart
I Assume a, b, c œ N.

I Let m = lcm(ca, cb) and n = c lcm(a, b). We will show that

m = n.

I By definition, lcm(a, b) is a positive multiple of both a and b,

so lcm(a, b) = ax = by for some x and y in N.

I From this we see that n = c lcm(a, b) = cax = cby is a positive

multiple of both ca and cb. Thus m Æ n.
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Taking the proof apart
I On the other hand, as m = lcm(ca, cb) is a multiple of both ca

and cb, we have m = cax = cby for some x , y œ Z.

I Then
1
c m = ax = by is a multiple of both a and b.

I Therefore lcm(a, b) Æ 1
c m so c lcm(a, b) Æ m, that is n Æ m.

I Since m Æ n and n Æ m, we have m = n. The proof is

complete.
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