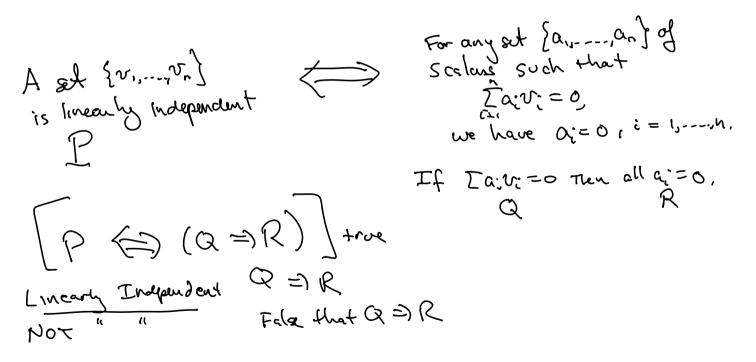
Definitions

An example from linear algebra

Definition: A set $\{v_1, \ldots, v_n\}$ of elements of a vector space V is called *linearly independent* if, for any set $\{a_1, \ldots, a_n\}$ of scalars, if $\sum_{i=1}^{n} a_i v_i = 0$ then $a_i = 0$ for all $i = 1, \ldots, n$. A set of vectors that is not linearly independent is called *linearly dependent*.



Theorem: The set of vectors $\{(1,3), (2,2)\}$ is linearly independent in \mathbb{R}^2 . Proof: We must show that $\overline{a_1(1,3)} + a_2(1,2) = 0 \implies a_1 = 0 \quad and \quad a_2 = 0$ $(\Sigmaa;v;)$ Assume $a_{1}(1,3) + a_{2}(2,2) = 0$ Therefore $(a_{1}, 3a_{1}) + (2a_{1}, 2a_{2}) = 0$ $(a_{+}2a_{2}, 3a_{+}2a_{2}) = 0$ $a_{1} + 2a_{2} = 0$ $3a_1 + 2a_2 = 0$ 2a, =0 so a,=0 Ten 2a2=0 so a2=0 Menefine the set is linearly independent.

Theorem: The set of vectors $\{(1,1,1), (2,2,2), (1,3,2)\}$ is linearly dependent in \mathbb{R}^3 .

We must show that Prool: is FALSE $\sum_{\alpha:v_i} = 0 \implies \alpha \parallel \alpha_i = 0$ P=1Q is FALSE if P Pis True and only if Q is FALSE PQPJQ T F F ; t $\sum a_i v = 0$ and not all $a_i = 0$. $a_{1}(1,1,1) + a_{2}(2,2,2) + a_{3}(1,3,2) = 0$ $(a_1 + 2a_2 + a_3, a_1 + 2a_2 + 3a_3, a_1 + 2a_2 + 2a_3) = 0$ $a_1 = 2 \quad a_2 = -1 \quad a_3 = 0.$ Then $\alpha_1(1,1,1) + \alpha_2(2,2,2) + \alpha_3(1,3,2) = 0$. We've shown that the nears are linearly dependent.