Multiplication Principle
Problem 5
Consider 8 digit binary strings such as 10011011 or 00001010.

- How many such strings are there? $\quad Y=\{0,1\}$
rookatelewents of

$$
\begin{aligned}
& |\overbrace{Y \times Y \times Y \cdots \times Y}^{8}|=2^{8} \\
& \left|\times Y_{1} \times Y_{2} \times \ldots \times Y_{n}\right|=\left|Y_{1}\right| \ldots\left|Y_{n}\right|
\end{aligned}
$$

$$
Y=\{0,1\}
$$

- How many such strings end in 0 such a string is an element of

$$
\left\lvert\, Y \times Y \times Y \times Y \times Y \times Y \times\left\{\left.\begin{array}{l}
2 \\
2
\end{array} \right\rvert\,=1=2^{7}\right.\right.
$$

- How many such strings have 1's for their second and fourth digits

$$
\begin{aligned}
& Y=\{0,1\} \\
& \left.\mid \underset{2}{Y} \times\{1\} \times{ }_{2}^{1} \times \underset{2}{1} \times 1\right\} \times Y \times Y \times Y \times Y_{2} \\
& 1
\end{aligned}
$$

- How many such strings have 1's for their second OR fourth digits.

$$
\begin{aligned}
& 2^{\text {nd }} \text { olget } \\
& Y \times\{1\} \times Y \times\left\{_{0}\right\} \times Y \times \times Y_{\sim} \times \times Y \\
& Y \times\{0\} x Y \times\{1\} x y \times Y x x+y \quad 0 \quad 1 \quad 2^{6} \\
& y \times\{1\} \times\{x\{1\} \times y \times y / x\rangle x y 1 \\
& 4^{\text {th }} \text { syst } \\
& \begin{array}{ll}
0 & 2^{6} \\
1 & 2^{6}
\end{array} \\
& 1 \frac{2^{6}}{3 \cdot 2^{6}} \\
& \text { Count string with a } O \text { in both ale } 2^{n d} \text { and } 4^{\text {th }} \text { poser. }
\end{aligned}
$$

