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Quantifiers

Remember that an open sentence is a sentence that includes

variables; when you specify the variables, the open sentence

becomes a statement that can be true or false.
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Quantifiers

Most equations that we want to “solve” are really open sentences.

For example,

3x = 7

x2
+ 5x + 6 = 0

are open sentences whose truth depends on the choice of x .

Whether or not these equations even have solutions depends on

what kind of values x is allowed to have.
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Quantifiers

For example:

I neither of these equations have solutions if x is required to be a

natural number.

I if x is allowed to be an integer, then the second equation has

two solutions, but the first one still has none.

I if x is allowed to be a rational number, then both equations

have solutions.
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Quantifiers

Quantifiers are an element of the logical language that put a scope

on the possible values of a variable in an open sentence, and in the

process convert the open sentence into a statement.

The are two quantifiers: - “there exists” makes the statement about

some x in a particular set, - “for all” makes the statement about all
x in a particular set.

open sentence true for some X
fateexists

open sentence true for all
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Existential quantifier (there exists)

“There exists x œ Q such that 3x = 7”

This statement is true if and only if the subset

X = {x : x œ Q, 3x = 7}

has at least one element – there is some x so that 3x = 7 among

the x œ Q.

I “There exists x œ Q such that 3x = 7” is True

I “There exists x œ Z such that 3x = 7” is False

More generally, if X is any set, and P(x) is an open sentence, then

the statement “There exists x œ X so that P(x)” (in symbols

“÷x , P(x)”) is true exactly when the set

Y = {x : x œ X , P(x)}

has at least one element.
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Univeral quantifier (for all)

The statement “For all x œ N, x2 > 0” is true if and only if

X = {x : x œ N, x2 > 0} = N.

It claims something is true for all x œ N. This is in fact a true

statement.

On the other hand, the statement “For all x œ Z, xˆ2>0” is false

since 0
2

= 0 and 0 œ Z.

More generally, the statement “For all x œ X , P(x)” (in symbols

“’x , P(x)”) is true exactly when

X = {x œ X : P(x)}.

This is a statement about all x œ X .
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A few more examples

I There exists x œ R such that x2
= 15.

I For all y œ R, | sin(y)| Æ 1.

I There exists a subset X of N which has 5 elements.
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Negating quantified statements

The statement “There exists x œ X such that P(x)” is false exactly

when “For all x œ X , not P(x)” is true.

For example, “There exists x œ R such that x2 < 0” is false because

“For all x œ R, x2 Ø 0” is true.

The statement “For all x , P(x)” is false exactly when “There exists

x such that not P(x)” is true.

For example, the statement “For all x œ N, x2 > 0” is true because

“There exists x œ N with x2 Æ 0.” is false.
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Existence and “OR”, For all and “AND”

There exists x œ X such that P(x) is a kind of “OR” statement.

For all x œ X such that P(x) is a kind of “AND” statement.
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