Remember that an open sentence is a sentence that includes variables; when you specify the variables, the open sentence becomes a statement that can be true or false.

> Open Sentence: X75 X=7 TRUE X=3 FALSE XY = 1 $x = \frac{1}{2}, y = 2$ $x = \frac{1}{2}, y = 2$ FALSE TRUL

Most equations that we want to "solve" are really open sentences. Stebement For example,

$$3x = 7$$
$$x^2 + 5x + 6 = 0$$

are open sentences whose truth depends on the choice of x.

Whether or not these equations even *have* solutions depends on what kind of values x is allowed to have.

 $3 \times = 7$ S = 7 $X^{2} + S \times + 6 = 0$ $\int_{(-2, -3)}$

For example:

- neither of these equations have solutions if x is required to be a natural number.
- ► if x is allowed to be an integer, then the second equation has two solutions, but the first one still has none. 3x = 7 has nointeger solutions
- if x is allowed to be a rational number, then both equations have solutions.

¢

Quantifiers are an element of the logical language that put a scope on the possible values of a variable in an open sentence, and in the process convert the open sentence into a statement.

The are two quantifiers: - "there exists" makes the statement about some x in a particular set, - "for all" makes the statement about all -slopen sentence true for some XEA threexists lopen sentence true for all XEA finall where is a geven set x in a particular set.

Existential quantifier (there exists)

"There exists
$$x \in \mathbb{Q}$$
 such that $3x = 7$ "

This statement is true if and only if the subset

$$X = \{x : x \in \mathbb{Q}, 3x = 7\}$$

has at least one element – there is *some* x so that 3x = 7 among the $x \in \mathbb{Q}$. $\exists x \not\models C$

- "There exists $x \in \mathbb{Q}$ such that $\Im x = 7$ " is True
- "There exists $x \in \mathbb{Z}$ such that 3x = 7" is False

More generally, if X is any set, and P(x) is an open sentence, then the statement "There exists $x \in X$ so that P(x)" (in symbols " $\exists x, P(x)$ ") is true exactly when the set $\exists x \in X, P(X)$ $Y = \{x : x \in X, P(x)\}$

has at least one element.

"For all XEIN X270" Univeral quantifier (for all)

The statement "For all $x \in \mathbb{N}$, $x^2 > 0$ " is true if and only if

$$X = \{x : x \in \mathbb{N}, x^2 > 0\} = \mathbb{N}.$$
 ever natural
number has $x^2 > 0$

It claims something is true for all $x \in \mathbb{N}$. This is in fact a true statement.

On the other hand, the statement (For all $x \in \mathbb{Z}$, $x^2 > 0$) is false since $0^2 = 0$ and $0 \in \mathbb{Z}$.

More generally, the statement "For all $x \in X$, P(x)" (in symbols " $\forall x, P(x)$ ") is true exactly when (XXEZX20) R a false

$$X = \{x \in X : P(x)\}.$$

This is a statement about
$$all x \in X$$
.

A few more examples

- There exists x ∈ ℝ such that x² = 15. TRUE: x = √15
 For all y ∈ ℝ, |sin(y)| ≤ 1. y[For all yell, |sin(y)] ≤ 1] TRUE

 $x^{2} = 15$

 \blacktriangleright There exists a subset X of N which has 5 elements.

$$JX \in \mathcal{P}(N)$$
 such that $|X| = 5$ true
 $X = \{1, 2, 3, 4, 5\}$ is an example

Negating quantified statements

 $\sim (\exists \times, P(x)) = (\forall \times, \sim P(x))$

The statement "There exists $x \in X$ such that P(x)" is false exactly when "For all $x \in X$, not P(x)" is true. For example, "There exists $x \in \mathbb{R}$ such that $x^2 < 0$ " is false because "It's have P(x) FALSE "For all $x \in \mathbb{R}$, $x^2 \ge 0$ " is true. The statement "For all x, P(x)" is false exactly when "There exists x such that not P(x)" is true. For example, the statement "For all $x \in \mathbb{N}, x^2 > 0$ " is true because "There exists $x \in \mathbb{N}$ with $x^2 \le 0$." is false.

$$\sim (\forall x, P(x)) = (\exists x, \neg P(x))$$

Existence and "OR", For all and "AND"

There exists $x \in X$ such that P(x) is a kind of "OR" statement. For all $x \in X$ such that P(x) is a kind of "AND" statement.