Biconditionals

The converse

$$
\text { If } P+\operatorname{ten} Q
$$

Given an implication $P \Longrightarrow Q$, its converse is the statement $Q \Longrightarrow P$.
If Q then P

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

Statement and Converse are different

If I own a BMW 335xi, then I own a car.

- P is "I own a BMW 335xi"
- Q is "I own a car"

The converse is "If I own a car, then I own a BMW 335xi".
$P \Longrightarrow Q$ is true but $Q \Longrightarrow P$ is false.

Biconditionals or Equivalence
$P \Longleftrightarrow Q$ means "If P, then Q " AND "If Q, then P ". It is often read "if and only if" since

- P if Q means $Q \Longrightarrow P$
- P only if Q means $P \Longrightarrow Q$.

It can also be read "necessary and sufficient" (P is necessary and sufficient for Q).
P is necesoang andsufficient for Q
$P \Rightarrow Q$ is Not The sAme As $Q \Rightarrow P$
$P \Leftrightarrow Q$ is the save as $Q \Leftrightarrow P$.

Truth Table for Equivalence
$P \Leftrightarrow Q \quad$ Pifand only of $Q \quad P \quad \begin{gathered}\text { necessary } \\ \text { and sufficient }\end{gathered}$ and suffcuint fr Q

	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$ means $P \Rightarrow Q D Q \Rightarrow P$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

P is equivalent to Q

Synonyms

- P if and only if Q
- P is necessary and sufficient for Q
- P is equivalent to Q
- If P, then Q, and conversely.

Sample problem
Put the statement "If $x y=0$ then $x=0$ or $y=0$, and conversely" in the form " P if and only if Q ".
P. $\quad x y=0$

Q: $x=0$ or $y=0$.
$\begin{array}{lll}x y=0 \quad \text { if and only if }(x=0 \text { or } y=0) . \\ \begin{array}{lll}\text { If } x y=0 & \text { then } x=0 & \text { (FALSE) }\end{array} \quad \begin{array}{l}x=3 \\ \text { If } x=0 \\ x=0\end{array} \text { then } x=0 & \text { (TRUE) } & \end{array}$

