Biconditionals

If Ptunq

Given an implication $P \implies Q$, its *converse* is the statement $Q \implies P$. $\downarrow f \otimes Hen P$

Statement and Converse are different

If I own a BMW 335xi, then I own a car.

- P is "I own a BMW 335xi"
- Q is "I own a car"

The converse is "If I own a car, then I own a BMW 335×i".

 $P \implies Q$ is true but $Q \implies P$ is false.

Biconditionals or Equivalence

 $P \iff Q$ means "If P, then Q" AND "If Q, then P". It is often read "if and only if" since

$$\blacktriangleright P \text{ if } Q \text{ means } Q \implies P$$

 $\blacktriangleright P \text{ only if } Q \text{ means } P \implies Q.$

It can also be read "necessary and sufficient" (P is necessary and sufficient for Q).

Truth Table for Equivalence

Synonyms

- \blacktriangleright *P* if and only if *Q*
- \triangleright *P* is necessary and sufficient for *Q*
- \triangleright *P* is equivalent to *Q*
- ▶ If P, then Q, and conversely.

Sample problem

Put the statement "If xy = 0 then x = 0 or y = 0, and conversely" in the form "P if and only if Q".