And, Or, Not

And, Or, Not

And, Or, and Not

Let P and Q be statements.
P. 18 is even
$\bar{Q}: 18$ is a multiple of 3
$R: 18$ is a of 5
P and Q is a new statement that is True if both P and Q are True; and false otherwise. P and Q true

Band R False 1815 even and 18 is anulitple of $3 \quad 18$ is nor a multiple P or Q is a new statement that is True if either P or Q, or ${ }^{\circ}{ }^{\text {both }}{ }^{5}$ th, are True; and false otherwise. For R is true $\quad \operatorname{Pand} Q$ true R false and P true
Not P is a new statement that is True if P is False, and False if P is Q. Not P is the statement

18 is not even
P true NOT P is False
Negation of P means the same as Not P.

And
P and Q can be written $P \wedge Q$ (compare with set intersection).
Λ : and $P \wedge Q$ means P and Q
intersection $A \cap B$

$$
A \cap B=\{x, x \in A \text { and } x \in B\}
$$

$x \in A$ is a statement
$(x \in A)$ and $(x \in B)$ could be written

$$
\begin{array}{r}
(x \in A) \wedge(x \in B) \\
A_{\cap} \cap B=\left\{x: \quad(x \in A): \tilde{n}_{-}(x \in B)\right\}
\end{array}
$$

OR
P or Q can be written $P \vee Q$ (compare with set union)
$\operatorname{Por} Q \quad P \vee Q$

$$
\begin{aligned}
A \cup B & =\{x: x \in A \text { or } x \in B\} \\
& =\{x:(x \in A) V(x \in B)\}
\end{aligned}
$$

Not
Not P can be written $\sim P$, or sometimes $\neg P$.

$$
\begin{array}{rlr}
& \sim P & \neg P \\
\bar{X} & =\{x: x \notin X\} \quad(X \subseteq U \text { universal set }\} . \\
& =\{x: \sim(x \in X)\}
\end{array}
$$

Examples
Write the open sentences $x \neq y$ and $y \geq x$ as P and Q, P or Q , or not P.

$$
x \neq y
$$

$P(x, y)$ be the open sentence $x=y$.
$x \neq y$ is $\sim P(x, y)$.
$y \geqslant x$ means $y>x$ or $y=x$.
$P(x, y)$ 为 " $y>x$ "
$Q(x, y)$ is " $y=x^{*}$

$$
y \geqslant x \text { is "P(x,y) or } Q(x, y)^{4} \text {. }
$$

Example
Express the following in the form $P \wedge Q, P \vee Q$ or $\sim P$.

$$
\begin{aligned}
& A \in\{\underline{X \in \mathcal{P}(\mathbb{N})}:|\bar{X}|<\infty\} \\
& |x|<\infty \text { : } \\
& x=\{3,4,5, \ldots\} \leqslant \mathbb{N} \\
& \bar{x}=\{1,2\} \text { finis, }
\end{aligned}
$$

$\mid \beta 1=\infty$
$A \in \rho(N)$ meaning $A \subseteq \mathbb{N}$.
($) A \subseteq \mathbb{N}$
(2) $|\bar{A}|<\infty: \bar{A}=\mathbb{N}-A$
$|N-A|$ ir finite.
Or statement is Panda Q open sentence

Truth Tables
Truth tables are an effective way to keep track of combinations of statements.

P	Q	P and Q
T	T	T
T	F	F
F	T	F
F	F	F

P	Q	P or Q
T	T	T
T	F	T
F	T	T
F	F	F

P	Not P
T	F
F	T

"Formulas"

