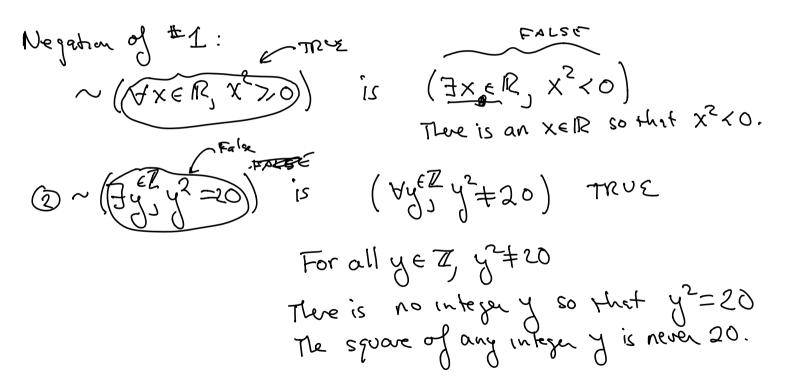
Negations

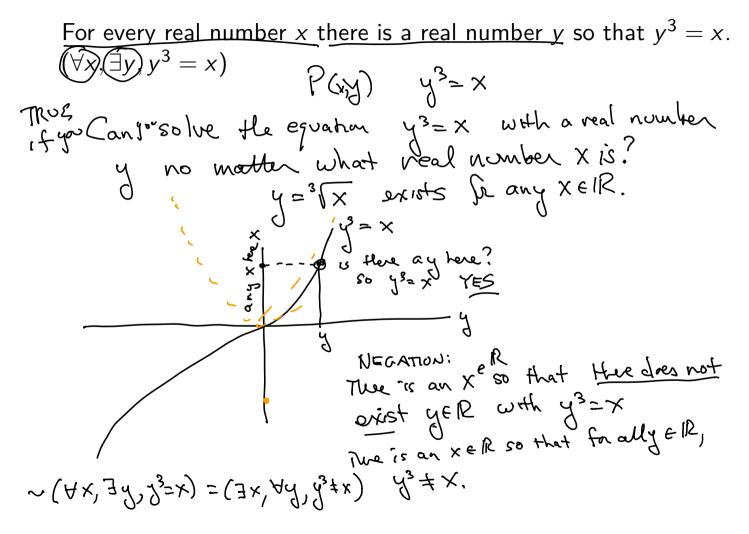
Negation examples

More examples

The square of every real number is non-negative. $(\forall x \in \mathbb{R}, x^2 \ge 0)$. There is an integer y so that $y^2 = 20$. $(\exists y \in \mathbb{Z}, y^2 = 20)$



Still more



Conditionals

More examples
$$f:\mathbb{R} \rightarrow \mathbb{R} \leftarrow \mathbb{F}$$

 $f:\mathbb{R}$ $\forall \mathcal{E}, \mathcal{E} \neq 0$ $\exists \mathcal{M} \leftarrow \mathbb{Z}, \mathcal{M} > 0$ For every positive real number ϵ , there is a positive integer M for
which $x > M$ implies $|f(x) - b| < \epsilon$.
 $f:\mathbb{R} \rightarrow \mathbb{R} \leftarrow \mathbb{R}$
 $f:\mathbb{R} \rightarrow \mathbb{R}$ Which $x > M$ implies $|f(x) - b| < \epsilon$.
Note implicit "for all x " in the implication. $f:\mathbb{R} \rightarrow \mathbb{R} \leftarrow \mathbb{R}$
 $f:\mathbb{R} \rightarrow \mathbb{R}$
 $f:\mathbb{R} \rightarrow \mathbb{R}$

Negation:

There is a positive real number ϵ so that for all positive integers M there is an x > M and $|f(x) - b| \ge \epsilon$.

$$(\exists z \neg 0)$$
 $(\forall M \in \mathbb{Z}, M \neg 0)$, $(\exists x \in \mathbb{R})$, so that $x \supset M$
and $|f(x) - b| \geqslant \mathbb{Z}$.
 $\forall z \in \mathbb{R}, z \land 0$
 $(\forall z \in \mathbb{R}, z \land 0)$