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Negation examples
I x and y are both even. (≥ (P(x) · Q(x))) P Q MQ Cpr
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More examples
The square of every real number is non-negative. (’x œ R, x2 Ø 0).
There is an integer y so that y2 = 20. (÷y œ Z, y2 = 20)
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Still more
For every real number x there is a real number y so that y3 = x .
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Conditionals
I P =∆ Q is equivalent to ≥ P ‚ Q.
I ≥ (P =∆ Q) is equivalent to P· ≥ Q.

If I own a car, I am from South Dakota.
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More examples
For every positive real number ‘, there is a positive integer M for
which x > M implies |f (x) ≠ b| < ‘.
Note implicit “for all x” in the implication.
Negation:
There is a positive real number ‘ so that for all positive integers M
there is an x > M and |f (x) ≠ b| Ø ‘.
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