Problem 12.2.10
Problem: Prove that the function $f: \mathbb{R}-\{1\} \overrightarrow{\mathbb{R}}-\{1\}$ defined by

$$
f(x)=\left(\frac{x+1}{x-1}\right)^{3}
$$

is bijective.
We must chow that f is both infective and surgective.
so let's consider unjectivily first. Assume $a, b \in \mathbb{R}-\{i\}$ and that $f(a)=f(b)$.

$$
\left(\frac{a+1}{a-1}\right)^{3}=\left(\frac{b+1}{b-1}\right)^{3}
$$

we will show that this implies that $a=b$.
Step 1. $\left(\frac{a+1}{a-1}\right)^{3}=\left(\frac{b+1}{b-1}\right)^{3} \quad \begin{aligned} & \text { suppose } u^{3}=v^{3} \\ & \text { ines } u=v\end{aligned}$
So telling chloe cots,
This is the assenter that $f(x)=x^{3}$ is infective. How do we know that $f(x)=x^{3}$ is infective.

$$
\begin{aligned}
(a+1)(b-1) & =(b+1)(a-1) \\
a x-a+b-x & =a+a-b-x \\
2 b & =2 a \\
b & =a .
\end{aligned}
$$

There f is injective.
Lama: $f(x)=x^{3}$ is infective
Proof: Observe that $f^{\prime}(x)=3 x^{2} \geqslant 0$ aral x and it's bygen than zero unters $x=0 . f(x)=x^{3}$ is increasing evegulere except at zoo where it has a critical point. so if $x>y$ flan $x^{3}>y^{3}$.

Suppose x, y are not equal. 1 We can assure $x>y$.
Then $x^{3}>y^{3}$. so $x^{3} \neq y^{3}$. $f(x)=x^{3}$ is infective.

Sujectivy. Ot Given $(\mathbb{B} \in \mathbb{R}$-\{i\} we need io find an $a \in \mathbb{R}-z i\}$
So that

$$
\begin{array}{ll}
\left(\frac{a+1}{a-1}\right)^{3}=b & \begin{array}{l}
f(x)=x^{3} \\
\text { is surgetw } \\
x^{3}=b \text { has } \\
a \text { solvhen fu } \\
b \in \mathbb{R}, \text { na }
\end{array} \\
\left(\frac{a+1}{a-1}\right)=\sqrt[3]{b} & \sqrt[3]{b} . \\
a+1=\sqrt[3]{b}(a-1) & \\
a-(\sqrt[3]{b}) a=-\sqrt[3]{b}-1 & \\
a(1-\sqrt[3]{b})=-\sqrt[3]{b}-1 \\
a=\frac{-\sqrt[3]{b}-1}{1-\sqrt[3]{b}}=\frac{\sqrt[3]{b}+1}{\sqrt[3]{b}-1}
\end{array}
$$

Prep: The composimn of bigective funchus is byective. $f(x)=x^{3}$ byectue $f(g(x))$ is byecture.
$g(x)=x+1$ bjective $g(x)=\frac{x+1}{x-1}$ byective

