Problem 12.2.10

Problem: Prove that the function $f : \mathbb{R} - \{1\}$ **•** $\mathbb{R} - \{1\}$ defined by

$$f(x) = \left(\frac{x+1}{x-1}\right)^2$$

is bijective.

is bijective.
We much show that f is both impedive and competive.
Go let's consider impedive first. Assume a be
$$R^{-2}i$$
 and that $f(a) = f(b)$.
 $\left(\frac{a+i}{a-i}\right)^{2} = \left(\frac{b+i}{b-i}\right)^{3}$
We will show that this implies that $a = b$.
Step 1. $\left(\frac{a+i}{a-i}\right)^{3} = \left(\frac{b+i}{b-i}\right)^{3}$ Supple $U^{3} = v^{2}$
So taking clue outs)
 $\left(\frac{a+i}{a-i}\right)^{2} = \left(\frac{b+i}{b-i}\right)^{3}$ Supple $U^{3} = v^{2}$
So taking clue outs)
 $\left(\frac{a+i}{a-i}\right)^{2} = \left(\frac{b+i}{b-i}\right)^{3}$ Supple $U^{3} = v^{3}$
 $Is injective. How
 $Is injective.$
 $\left(a+i\right)(b-i) = (b+i)(b-i)$
 $gk - a+b = k = ak + a-b = k$
 $2b = 2c$
 $b = cq$.
Thefore f is injective fractions
that $f(x) = 3x^{2} \ge 0$ and its by set
than give unteres $x = 0$. $f(x) = x^{2}$ is increasing eventions
 $pred : chosen that f'(x) = 3x^{2} \ge 0$ and its by set
 $f(a-i) = x^{2} = x^{2}$
 $f(a-i) = x^{2} = x^{2}$
 $f(a) = x^{2} = x^{2}$ is injective fractions
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.
 $f(x) = x^{2}$ is inverse $x = 0$.$

Supectivity. ON Given
$$(b \in R - 2i]$$
 we need to find an $q \in R - 2i]$
So that

$$\begin{pmatrix} a+1 \\ a-1 \end{pmatrix}^2 = b$$

$$f(x) = x^3$$

$$\begin{pmatrix} a+1 \\ a-1 \end{pmatrix} = \sqrt[3]{b}$$

$$a + 1 = \sqrt[3]{b}$$

$$a + 1 = \sqrt[3]{b} (a - 1)$$

$$a + 1 = \sqrt[3]{b} - 1$$

$$a - \sqrt[3]{b} = -\sqrt[3]{b} - 1$$

$$a = \sqrt[3]{b} - 1$$

$$a = -\sqrt[3]{b} - 1$$

$$a = \sqrt[3]{b} - 1$$

$$a$$