
Inverse Relations and Inverse Functions
 



The identity function
Definition: Let A be a set. The identity function iA : A æ A is the
function defined by iA(x) = x for all x œ A.
As a set of ordered pairs, iA µ A ◊ A consists of all pairs (a, a) for
a œ A.
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The identity function
Proposition: The identity function is bijective.
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The inverse of a relation
Definition: Let A and B be sets and let R be a relation on
R µ A ◊ B. The inverse relation R≠1 to R is the relation on B ◊ A
defined by

R≠1 = {(b, a) œ B ◊ A : (a, b) œ R}.
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Examples of inverse relations
Example: Let A = R and let R be the relation <. Then R consists
of all pairs (a, b) œ R ◊ R with a < b. The inverse relation R≠1

consists of all pairs (b, a) œ R ◊ R with (a, b) œ R. Thus R≠1 is
the relation >.
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Another example
Example: Let A = Z and let R be the relation “divides”, so that R
consists of pairs (a, b) œ Z ◊ Z where a|b. The inverse relation R≠1

consists of pairs (a, b) where b|a, or, in other words, where a is a
multiple of b.
So the inverse relation to a|b, meaning a is a divisor of b, is the
relation aRb when a is a multiple of b.
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