Inverse Relations and Inverse Functions

The identity function

Definition: Let A be a set. The identity function $A \to A$ is the function defined by $i_A(x) = x$ for all $x \in A$.

As a set of ordered pairs, $i_A \subset A \times A$ consists of all pairs (a, a) for $a \in A$.

The identity function

Proposition: The identity function is bijective.

Proof:
$$i_A$$
 is impective.
We firstly a, $a' \in A$ and $i_A(a) = i_A(a')$ then $a = a'$.
must be show $i_A(a') = a$ and $i_A(a') = a'$
show $i_A(a) = a$ and $i_A(a') = a'$.

if is surjecture.
We must show that for any acA, there is an a'cA
so that
$$i_A(a') = a$$
. Set $a' = a$, then $i_A(a') = i_A(a)$
= a.

The inverse of a relation

Definition: Let A and B be sets and let R be a relation on $\underline{R \subset A \times B}$. The inverse relation R^{-1} to R is the relation on $B \times A$ defined by

Examples of inverse relations

Example: Let $A = \mathbb{R}$ and let R be the relation <. Then R consists of all pairs $(a, b) \in \mathbb{R} \times \mathbb{R}$ with a < b. The inverse relation R^{-1} consists of all pairs $(b, a) \in \mathbb{R} \times \mathbb{R}$ with $(a, b) \in R$. Thus R^{-1} is the relation >.

Another example

Example: Let $A = \mathbb{Z}$ and let R be the relation "divides", so that R consists of pairs $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ where a|b. The inverse relation R^{-1} consists of pairs (a, b) where b|a, or, in other words, where a is a multiple of b.

So the inverse relation to a|b, meaning a is a divisor of b, is the relation aRb when a is a multiple of b.

