Composition of functions

Suppose that $f : A \rightarrow B$ and $g : B \rightarrow C$ are functions. The *composition* of f and g is a new function $g \circ f : A \to C$ defined by $(g \circ f)(x) = g(f(x)).$ 907

Composition cont'd

In terms of ordered pairs, if $\underline{f \subseteq A \times B}$ and $\underline{g \subseteq B \times C}$ are functions, then $g \circ f$ is the set of ordered pairs $(a, c) \in A \times C$ such that there exists $b \in B$ with $(a, b) \in f$ and $(b, c) \in g$.

$$g \cdot f = \begin{cases} (a, c) & | & a \in A, c \in C \text{ such that Have is a b e B} \\ & with & (o, b) \in f \text{ and } (b, c) \in g \end{cases}$$

Variations

- Suppose $f : A \to B$ and $g : C \to D$ are functions and $B \subseteq C$. Then we can still define $g \circ f$ by the same formula $(g \circ f)(x) = g(f(x))$.
- Suppose f : A → B and g : C → D are functions and the range of f is a subset of C. Then we can still define (g ∘ f) by the same formula.

$$range(f) = \{ b \in B | \exists a \in A, (a, b) \in f \}$$

A warning

Warning: $g \circ f$ means first f then g NOT first g, then f, which is what our normal left-to-right instincts (at least in English) might suggest.

Examples

Problem 12.4.1: Suppose $A = \{5, 6, 8\}$, $B = \{0, 1\}$, and $C = \{1, 2, 3\}$. Let $f = \{(\underline{5}, \underline{1}), (\underline{6}, 0), (8, 1)\} \subseteq A \times B$ and let $g = \{(0, 1), (1, 1)\} \subseteq B \times C$. Find $g \circ f$.

Examples continued

Problem 12.4.3: Let $A = \{1, 2, 3\}$ and let $f_A \subseteq A \times A$ be the Find $g \circ f$ and $f \circ g$. function Because $= \{ (1,2), (2,2), (3,1) \}$ $f: A \longrightarrow A$ $q \neq \{2, 1, 3\}, \{2, 1\}, \{3, 2\}$ $q: A \rightarrow A$ It makes sense b look at gof AND fog 1) @ gof. Fist f. Heng. gof. g(1,1), (2,1), (3,3)} 2) f = q (rost y_1 then f $\{(1,1), (2,2), (3,2)\}$ Example that in general composition of functions isn't consultative.

Examples continued

Problem 12.4.9: Let $f : \mathbb{Z} \to \mathbb{Z}$ be the function defined by f(m, n) = m + n and $g : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be the function g(m) = (m, m). Find the formulae for $g \circ f$ and $f \circ g$.

Proposition: Suppose that $f : A \to B$, $g : B \to C$ and $h : C \to D$ are functions. Then $(h \circ g) \circ f = h \circ (g \circ f)$. In other words, composition of functions is associative.

Theorem: Suppose $f : A \rightarrow B$ and $g : B \rightarrow C$ are functions. $\not \propto \mathbf{i} f$ and g are injective, then $g \circ f$ is injective. lf f and g are surjective, then $g \circ \underline{f}$ is surjective. Suppose f and g are injective. We will show that gof is injective. Suppose $(g \circ f)(x) = (g \circ f)(y)$. We will show that x = y. (dot)(x) = d(t(x)) $(d \circ t)(\lambda) = d(t(\lambda))$ so g[f(x)] = g[f(y)]q injective. So f(x) = f(y) F injective so X= y. . cof is meane,

Suppose q and f are surjective, we will show that glister (g.f)(A) is also surproduce. (g.f): A -> C Choose a ceC. we must find act so that $g \circ f(a) = C$ Since $g \circ c$ surjective, there is a beB so that $g(a) \neq g(b) = C$. Now since $f \circ c$ surjective there is an act $g \circ f(a) = b$. $\left(\begin{array}{c} Q \circ \tilde{f} \end{array} \right) \left(\alpha \right) = C$ Then $(g \circ f)(a) = g(f(a)) = g(b) = C$. So gof 15 superture.