


Composition of functions

Suppose that f : A — B and g : B— C are functions. The

composition of f and g is a new function go f : A — C defined by

(gof)(x) =g(flx)). i"/%\ § —




Composition cont'd

In terms of ordered pairs, if f C Ax Band g C B x C are
functions, then g o f is the set of ordered pairs (a,c) € A x C such
that there exists b € B with (a, b) € f and (b, c) € g.
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Variations

» Suppose f : A— B and g: .&% D are functions and B C C.
Then we can still define g o f by the same formula

(g )(x) = g(F()).

» Suppose f : A— Band g: C — D are functions and the range
of f is a subset of C. Then we can still define (g o f) by the
same formula.
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A warning

Warning: gol f meang first f {then g/ NOT first g, then f, which is
what our normal left-to-Fight instincts (at least in English) might

suggest.



Examples

Problem 12.4.1: Suppose A= {5,6,8}, B={0,1}, and
C={1,2,3}. Let f ={(5,1),(6,0),(8,1)} CAx B and let
g ={(0,1),(1,1)} CBx C. Findgof.
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Examples continued
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Examples continued
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Problem 12.4.9: Let f : Zo=+Z38 be the function defined by
f(m,n)=m+ nand g :7Z — Z X 7Z be the function
g(m) = (m, m). Find the formulae for go f and f o g.
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Proposition: Supposethat f:A— B, g: B— Cand h: C — D
are functions. Then (hog)of§=ho(gof). In other words,
composition of functions is assoaatwe

/£M3 >C/ND
(hegy§ € AXU |

B ATR (a W CQE&\\\\ QGAE
e (45 < ARD = QL % |

CsD AT <

(o) § () = () [SE) = Mf{g(%m\\

¥\%Q@N k@@ﬂ} %ﬁmm




Theorem: Supposef_:/ALj B and g : B — C are functions.

4 P If f and g are injective, then g o f is injective.
» |If f and g are surjective, then g o f is surjective.
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