Examples on Injective, Surjective, and Bijective functions

Example 12.4.

Proposition: The function $f : \mathbb{R} - \{0\} \to \mathbb{R}$ defined by the formula $f(x) = \frac{1}{x} + 1$ is injective but not surjective.

 $f = \int (x_{3}, \frac{1}{x} + 1)$ where $x \in \mathbb{R} - \{0\}$ and $y \in \mathbb{R}$ Recall that fis injective if, finall a, a' EA, if f(a)=f(a') then a=a'. Proof that fis injective. So suppose f(a) = f(a') then a = a' + 1T = Tso fis injective. Recall the fis surjective if, facell bell, there is an act AR-Sol So that P(b) = b. $\int_{\overline{M}} +(=b)$ 1 = b - 1 a $\alpha = \frac{1}{h-1} \quad \text{validifb ± 1.}$ If b=1 they L+1+4. f is not surjective because b=1 is not in range of f.

$$f(a) = \frac{1}{a} + 1$$

Example 12.5.

Proposition: The function $f : \mathbb{R} - \{0\} \to \mathbb{R} - \{1\}$ is injective and surjective (hence bijective).

Ence bijective).
Trypectivity: if
$$\frac{1}{a} + i = \frac{1}{a} + i = 2$$
 $a = a'$
so $\int is$ injective.
Surjectivity. If $b \in \mathbb{R} - \{i\}$, we can solve
 $\int (a) = \frac{1}{a} + i = b$
 $G = \frac{1}{b-1}$ which is valid
 $G = \frac{1}{b-1}$ which is valid
 $I \notin codom an of f.$

Example 12.6

Proposition: The function $g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by the formula g(m, n) = (m + n, m + 2n) is both injective and surjective.

$$g(m_{3}m) = (m+n_{3}m+2n)$$

$$Injectivity: Suppox $g(m_{3}n) = g(m'_{3}n')$
so $(m+n_{3}m+2n) = (m'+n'_{3}m'+2n')$
 $m+2n = m'+n'_{3}$

$$m+2n = m'+n'_{3} = m'+n'_{3}$$

$$m+2n = m'+n'_{3} = m'+n'_{3}$$

$$flere face g is $(n + pcthree)$

$$g(m_{3}n) = (m'_{3}n')$$

$$flere face g is $(n + pcthree)$

$$m+2n = b$$

$$m+2n = b$$

$$m+2n = b$$

$$m+2n = b$$

$$g(2a-b, b-a) = (a_{3}b)$$

$$_{3}$$

$$flere face g is surjective.$$$$$$$$

Example 12.15

Let $A=\{A,B,C,D,E,F,G\}$ and let $B = \{1,2,3,4,5,6,7\}$. How many functions are there from A to B? How many of these are injective? How many are surjective? How many are bijective?

