Injective (1-1) and surjective (onto) functions

We introduce three fundamental properties that some functions have. These properties test your ability to work with quantifiers in a very fundamental way.

Injective functions
Definition (12.4 in the book): Let $f: A \rightarrow B$ be a function.
Then
f is called injective if, for all a, a^{\prime} in A, if $a \neq a^{\prime}$ then

$\forall a \operatorname{cat} a^{\prime} \mathrm{e} A$, of $a \neq a^{\prime}$ then $f(a) \neq f\left(a^{\prime}\right)$.
fir infective of, pa all $a, a^{\prime} \in A$,
$f_{\in} \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)=3 x+2
$$

Prop: f is infective.
proof. Let $a, a^{\prime} \in \mathbb{R}$. Suppose $a \neq a^{\prime}$.
Then $f(a)=3 a+2\}$ suficterut.

If $f(a)=f\left(a^{\prime}\right)$ Hen $a=a$!
Proof: Let $a, a^{\prime} \in \mathbb{R}$, suppose $f(a)=3 a+2=f\left(a^{\prime}\right)$

$$
3 a+2=3 a^{\prime}+2
$$

Hen $3 a=3 a^{\prime}$ and $a=a$!
f is infective.

Surjective functions

$$
f: A \rightarrow B
$$

f is called surjective if, for all $b \in B$, there exists $a \in A$ such that $f(a)=b$. (such f are also called "onto" functions.)
Note: whether a function is surjective depends on its codomain. It is always surjective onto its range.

We must show that.

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=3 x+2
\end{aligned}
$$

Forall $b \in \mathbb{R}$, there exist an $a \in \mathbb{R}$ so that

$$
f(a)=b
$$

In olen words

$$
f(a)=3 a+2=b
$$

let $b a=\frac{b-2}{3}$
Hen $f(a)=3\left(\frac{b-2}{3}\right)+2=b$
inereque f is suyedis.

Picture from page 229

$$
\begin{aligned}
& \text { BIJECTIVE = SURJECTIVE } \text { AND } \\
& \text { INJECTIVE: }
\end{aligned}
$$

Not surjective

$$
\frac{a \neq a^{\prime} \Rightarrow f(a) \neq f\left(a^{\prime}\right)}{\text { injective }}
$$

Bijective functions

- f is called bijective if it is both surjective and injective.

Injective functions

