Functions via set theory

A typical "function" is given by a formula of the form

Functions as (special) relations

The key insight in abstracting the idea of "function" is to understand what the graph of a function really is.

If $f : A \to B$ is a function, then the graph of f is the set of points $G(f) = \{(a, b) \in A \times B : f(a) = b\}.$

Two observations:

- 1. \underline{G} is a relation from the set A to the set B since $G \subset A \times B$.
- 2. Everything we need to know about f is stored in G.

A is called the domain of f. B is called the codomain of f. Given G. What is f(3)? Look for the ordered pair (3, y). G. y = f(3). $G \subseteq A \times B$.

Functions as (special) relations continued

The key property that makes a general relation $\stackrel{\text{G}}{a}$ function is the fact that

that for all $a \in A$, there exists a unique $b \in B$ so that the pair $(a, b) \in G(M)$. (note the quantifiers here).

Notice that for a general relation, there is no such condition – any subset R of $A \times B$ is a relation.

Figure 2: A relation and a function on (0..9)x(0..9)

Drawn in this way, a relation $R \subset A \times B$ is a function if it passes the *vertical line test* - every vertical line hits exactly one point in B.

relations vs functions continued

We can also explore the special properties of functions among relations using the other way of representing functions.

The range of a function

Definition: The range of a function F is the set of $b \in B$ such that there exists $a \in A$ with $(a, b) \in F$.

In "old fashioned" terms, the range of F is the set of b for which there exists a with F(a) = b.

Example of the range of a function

(Example 12.3 from the book). We define $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by the formula $\phi(m, n) = 6m - 9n$. As a set, this is the function $\{(m, n), 6m - 9n\}$ as a subset of $\mathbb{Z}^2 \times \mathbb{Z}$. -112 - 5 6 12 mm What is its range? $\varphi:(m_n)=6m-9n.$ -1 -3 3 -2 -12 -6 - - $p \in (\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z} = \{(m,n) \in (m-q_n)\}$ 6m - 9n = 3(2m - 3n)Range of includes my multiples of 3 $\begin{cases} 6m - 9n f = Smultiples \\ of gcd(6,9) \end{cases}$ = multiples of 3. $\int x [3]x \} = v ang (q).$ By Erclidt algorithm, range (g) E {X [3 [X] Multiples of 3,

Equality of functions

A Function F is a subset of the Cantesian product of AxB with the propuly that for every act there is a uniques س بهلم Since functions are defined to be sets, two functions are equal if (a,b) eÆ

they are the same set.

Proposition: If two functions F and G are equal, they have the same domain.

Proof: The set of a such that $(\underline{a}, x) \in F$ is the domain of F. Since F = G, we know that $(a, x) \in G$, so a is in the domain of G. This proves that the domain of F is a subset of the domain of G. But the same argument shows the opposite inclusion.

Proposition: If two functions are equal, then F and G have the same range. $revel(F) = \{ \chi \in B \text{ is } f \leftarrow n^+ \exists_n \in A \text{ or } \forall \land (n, \chi) \in F \}$.

Proof: Let x be in the range of F. Then there exists an a in the domain of **\$**F so that $(a, x) \in F$. Since F = G, we have $(a, x) \in G$, so x in the range of G. This proves that the range of F is contained in the range of G. The opposite argument is the same.

We've proved that if F = G then the domain and range of F and G are the same. The converse is false; there are lots of different functions with the same domain and range.

What is true is this:

Proposition: If F and G are functions with the same domain, then F = G if and only if F(x) = G(x) for all x in that domain.

\bigcup , , , ,

$$\Rightarrow F(x) = G(x) \text{ fn all } x \in d \text{ domain.}$$

$$F \Rightarrow (x, F(x)) = (x, G(x)) \in G$$

$$F = \{(x, f(x)) \mid x \in d \text{ oman } \}$$

$$G = \{(x, f(x)) \mid x \in d \text{ oman } \}$$

$$F(x) = G(x) = F(x) = G$$

F:
$$[R \rightarrow [o_{3}i]$$

 $\begin{cases} F(x) = 5inx \\ G(x, sin(x)) | x \in \mathbb{R} \end{cases}$
 $\begin{cases} G: [R - i]R \\ G(x) = 5in(x) \\ G(x, sin(x)) | x \in \mathbb{R} \end{cases}$