Relations between (different) sets

Relations between (different) sets

$$
R \subseteq A \times A \quad A \text { set } R \text { subset }
$$

$a R b$ means $(a, b) \in R \subseteq A \times A . \quad A=\mathbb{R}$
if $a R b$ means $a<b$, then $R=\{(a, b) \mid a<b\}$.
Is $3<5$? look to see of $(3,5) \in R$.

Up to now we considered a relation R on a single set A, viewed as a subset of the Cartesian Product $R \subseteq A \times A$.

Sometimes we want to capture a relationship a different sort of relationship.

- Consider the a relation between the integers \mathbb{Z} and the set 0,1 where $a R 0$ if a is even and $a R 1$ if a is odd. $\mathbb{Z} \times\{0,1\}$
- This can be expressed as a subset $R \subseteq \mathbb{Z} \times\{0,1\}$. If we let E and O be the sets of even and odd numbers respectively, then R consists of the pairs

Another example.
S is the set of applicatmts for residency programs. R is the of residency programs.

We can construct a relation $M \subseteq S \times R$ where $s M r$ means that student s has a applied to program r

In this case the most natural picture might look like this
M: SMr if that student has applied 10 a Residency program

$$
M . \subseteq S \times R
$$

