The integers modulo n

The integers modulo n

Formal definition of integers mod n
Definition: Let n be a natural number greater than 1 . The set of integers modulo n, written \mathbb{Z}_{n}^{n}) is the set of equivalence classes [a] for the equivalence relation defined by congruence modulo n.

Remark: The book gives a careful walkthrough of an example in the case where $n=5$.

$$
\mathbb{Z}_{n}=\{[a] \mid a \in \mathbb{\mathbb { R }}\}
$$

whee $[a]=\{x \in \mathbb{Z} \mid x \equiv a \bmod n\}$.

$$
\begin{aligned}
& n=5 \quad a=2 \\
& {[a]=\{-8,-3,2,9,12,17,22, \ldots\}}
\end{aligned}
$$

Properties of \mathbb{Z}_{n}
Proposition: \mathbb{Z}_{n} has n elements $\{[0],[1], \ldots,[n-1]\}$. \mathbb{Z}_{n} has n elements.

[0] $\operatorname{cis} \cos \cos (4)$

Proof: Every integer ais $\#$ can be written in only way as $a=q n+r$ where $0 \leq r<n$.
Therefore every integer a is congruent mod n to exactly are r between O (inclusive) and $n-1 \quad($ conclusive). $\quad a \equiv r \bmod n . \quad 0 \leq r<n$.
On the other hand of $a \equiv j \bmod u, \quad 0 \leq j<n$, Hen $a=k u+j$ so $j=r k=q$.

Arithmetic in \mathbb{Z}_{n}

$$
[0],[1], \ldots[4]
$$

Proposition: Define $[a]+[b]=[a+b]$ and $[a][b]=[a b]$. Then these are well-defined operations, meaning that if $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$ then $[a]+[b]=\left[a^{\prime}\right]+\left[b^{\prime}\right]$, and similarly for multiplication.

$$
\begin{aligned}
& {[a]+[b]=[a+b]} \\
& {[a][b]=[a b]}
\end{aligned}
$$

mods

$$
[3][2]=\left[\begin{array}{l}
6 \\
T
\end{array}\right]=[1]
$$

$$
\begin{gathered}
n=5 \\
{[2]+[1]=[3]} \\
{[2]+[3]=[5]=[0]} \\
+4]+[3]=[7]=[2]
\end{gathered}
$$

$$
\begin{aligned}
& {[3]+[2]=[5]} \\
& {[3]=[10] \quad[10]+[-12]=[-2]} \\
& {[2]=[-12] \quad(\ldots,-9,-2,5,12, \ldots]}
\end{aligned}
$$

$$
\begin{aligned}
{[a]=\left[a^{\prime}\right] } & a \equiv a^{\prime} \bmod n \text { so } a=a^{\prime}+k n \text { k,st } \mathbb{Z} . \\
{[b]=\left[b^{\prime}\right] } & b \equiv b^{\prime} \bmod n \text { so } b=k^{\prime}+\operatorname{sn} \\
{[a+b]=\left[a^{\prime}+b^{\prime}\right] } & a+b=a^{\prime}+b^{\prime}+(k+s) n \\
& \text { so } a+b \equiv a^{\prime}+b^{\prime} \bmod n
\end{aligned}
$$

