
Equivalence Relations and partitions
 



Partitions
Definition: A partition of a set A is a set of non-empty subsets of
A such that the union of all of the subsets is A and the intersection
of any two of the subsets is the empty set.
Intuitively: a partition is a division of A into disjoint subsets.



Partitions (Examples)
I Integers divided into even and odd integers.
I Integers divided into congruence classes modulo 3.
I Books with one author divided up into classes by author.
I People grouped by their county of residence.
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Partitions and Equivalence Relations
Theorem (11.2): Let R be an equivalence relation on a set A.
Then the equivalence classes {[a] : a œ A} form a partition of A.
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Converse to Theorem 11.2
Proposition: Suppose P is a partition of a set A. Define a relation
R on A by setting aRb if and only if a and b belong to the same
element of the partition. Then R is an equivalence relation.
As a result, partitions of a set are “the same” as equivalence
relations on a set.
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