Equivalence Relations
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Equivalence Relation: Definition ob e () eR

Definition: Let A be a set. A relation R on A is called an
equivalence relation if it is reflexive, symmetric, and transitive.
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Examples
Let A= {-2 —1,1,2,3,4}.

» The relation = is an equivalence relation. *
X » The relation “has the same parity as” is an equivalence relation.
» The relation “has the same sign as” is an equivalence relation.

» The relation “has the same sign and parity” is an equivalence -
relation.
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Let X be the set of books in Babbidge Library with one author.
Here are some equivalence relations:

» Has the same author.
» Has the same number of pages.

» Are located on the same floor of the library.



Equivalence Classes \

Definition: Let A be a set and R d’relation on ,i For any a € A,
the equivalence class of a under R, written [a] or [a]g, is the set
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If A={-2,-1,1,2 3 4} and R is the relation “has the same parity
as” then: T T
(2,2

@is the set@ (- 2 ] = EZ__I
gbis the same set {—2,2,4}
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Equivalence Classes - Examples

If X is the set of books in Babbidge Library with one author, and R
is the relation “has the same author” then

» [Ray Bradbury] is the set of books in Babbidge Library with
only one author, and that author is Ray Bradbury.

If R is the relation “has the same number of pages”, then

» [War and Peace] is the set of books in Babbidge Library (with
one author) that have the same number of pages as War and
Peace.

Question: why do | insist on books with one author?
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Example 11.12 - polynomials

Let P be the set of polynomials with real coefficients. Define a
relation R on P by saying that fRg if f and g have the same degree.

Then R is an equivalence relation.

The equivalence cIass@of the polynomial x consists of all

polynomials of degree one. [X)= ,gs; : QRXK = gg @Q@ 3:6)(
= TR g =17

More generally there is one equivalence class for each degree, and
the equivalence class consists of all polynomials of that degree.
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Example 11.13 - Congruence
We have seen that = (mod n) is an equivalence relation on Z.

What are the equivalence classes [x]| for x € Z7? c.
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Rational numbers

Let M be the set of pairs (m, n) where m and n are integers and
n # 0. Define a relation (m, n)R(m’, n") if mn’ — m'n = 0. What
are the equivalence classes?
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