Relations

Relations

Examples of Relations

► =, <, >, ≤, ≥, ≠, etc. are relations between numbers. 3 < 5 $\pi > e$ $17 \neq 46$

► \subseteq is a relation between sets $\chi \subseteq \checkmark$

"is the parent of" or "is a child of" or "is a spouse of" are relations between people.

Abstract Relations

Suppose we consider the relation $\langle \text{on} \mathbb{N} \rangle$ We can "abstract" this relation by considering all pairs $(x, y) \in \mathbb{N} \times \mathbb{N}$ where x < y. Let R be the set of such pairs. $R = \int (x, y) \int x < y \int x < y$

(1) ER (SY) &R

So
$$(1,2) \in R$$
, but $(5,4) \notin R$.

Once we have the set R, we know everything about <. Namely

$$\underbrace{x < y \Leftrightarrow (x, y) \notin R}_{P}$$

Now we *identify* the relation \leq with this set R and we can study relations using set theory.

A big picture $A = \sum critices mosthy in North America \sum R = E(X, y) | there$

Here the underlying set is "North American Cities" and the relation is $(x, y) \in R$ if there was a United flight joining the two cities in 2019.

Abstract Relations: formal definition

Definition: Let A be a set. A *relation* on A is a subset R of the Cartesian product $A \times A$. We abbreviate the statement $(x, y) \in R$ as \underline{xRy} , and $(x, y) \notin R$ as \underline{xRy} .

Abstract relations: A few examples • (Example 11.1) $A = \{1, 2, 3, 4\}$ and R consists of • (Example 11.2) $A = \{1, 2, 3, 4\}$ and S consists of $\ \bigcirc \ \ = \ \ \{(1,1),(1,3),(3,1),(3,3),(2,2),(2,4),(4,2),(4,4)\} \subseteq A \times A$ 151 252 but 2\$3 $RNS = \{(3,3), (3,3), (2,2), (4,2), (4,4)\}$ = { (x,y) | x Ry and XSy X > y and Xy have same parily J

Abstract Relations

 (Example 11.3) The intersection of the two relations from the previous examples is a relation

 $\{(1,1),(2,2),(3,3),(3,1),(4,4),(4,2)\}$

One more example

• (Example 11.4)
$$B = \{0, 1, 2, 3, 4, 5\}$$
 and

 $U = \{(1,3), (3,3), (5,2), (2,5), (4,2)\} \subseteq B \times B.$

Problem 3, page 204.

Problem 5, page 204.

Write out the sets A and $R \subseteq A \times A$ described by this diagram.

