Relations

Relations

Examples of Relations

$\Rightarrow=, \leq, \geq, \leq, \geq, \neq$ etc. are relations between numbers.

$$
3<5 \quad \pi \geqslant e
$$

$17 \neq 46$

- \subseteq is a relation between sets

$$
X \leq Y
$$

- "is the parent of" or "is a child of" or "is a spouse of" are relations between people.
- "comes earlier in the dictionary" is a relation between words.

Abstract Relations

Suppose we consider the relation $<$ on \sqrt{N}. We can "abstract" this relation by considering all pairs $(x, y) \in \mathbb{N} \times \mathbb{N}$ where $x<y$. Let R be the set of such pairs.
So $(1,2) \in R$, but $(5,4) \notin R$.

Once we have the set R, we know everything about $<$. Namely

$$
x<y \Leftrightarrow(x, y) \notin R .
$$

Now we identify the relation \leq with this set R and we can study relations using set theory.

Pictures of relations

$$
\begin{aligned}
& \text { s of relations } \\
& x<y=\{(x, y) \mid x<y\} .
\end{aligned}
$$

$R=$ all pl os in $\mathbb{N} \times \mathbb{N}$
above the diagonal

A big picture

$$
A=\{\text { cities mostly in Ninth America }\} \quad R=\{(x, y) \mid \text { there }
$$

Here the underlying set is "North American Cities" and the relation is $(x, y) \in R$ if there was a United flight joining the two cities in 2019.

Abstract Relations: formal definition

Definition: Let A be a set. A relation on A is a subset R of the Cartesian product $A \times A$. We abbreviate the statement $(x, y) \in R$ as $x R y$, and $(x, y) \notin R$ as $x R y$.

Abstract relations: A few examples
(Example 11.1) $A=\{1,2,3,4\}$ and R consists of

$$
R=\frac{\{(1,1),(2,1),(2,2),(3,3),(3,2),(3,1),(4,4),(4,3),(4,2),(4,1)\} \subseteq A \times A}{1 R 1 \quad 2 R 1 \quad 1 R 2 \text { became }(1,2) \in R \quad[\text { Secure : }(x, y) \in R \subseteq \times \geqslant y] .}
$$

(Example 11.2) $A=\{1,2,3,4\}$ and S consists of

$$
S=\{(1,1),(1,3),(3,1),(3,3),(2,2),(2,4),(4,2),(4,4)\} \subseteq A \times A
$$

151252 but $2 \$ 3$

$$
\left.\begin{array}{rl}
R \cap S & =\{(1,1)(3,1)(3,3)(2,2)(4,2) \quad(4,4)\} \\
& =\{(x, y) \mid
\end{array} \begin{array}{ll}
x R y \text { and } x S y \\
x \geqslant y \text { and } x, y \text { have same party }\}
\end{array}\right\}
$$

Abstract Relations

- (Example 11.3) The intersection of the two relations from the previous examples is a relation

$$
\{(1,1),(2,2),(3,3),(3,1),(4,4),(4,2)\}
$$

One more example

- (Example 11.4) $B=\{0,1,2,3,4,5\}$ and

$$
U=\{(1,3),(3,3),(5,2),(2,5),(4,2)\} \subseteq B \times B
$$

Problem 3, page 204.

- Let $A=\{0,1,2,3,4,5\}$. Write out the relation R that expresses \geq on A and illustrate it with a diagram.

$$
\geqslant \quad R=\{(x, y) \mid x \geqslant y\} .
$$

$$
\left\{\begin{array}{lllll}
(0,0) & (1,0) & (2,0) & (3,0) & (4,0) \\
(1,1) & (2,1) & (3,1) & (4,1) & (5,1) \\
(2,2) & (3,2) & (4,2) & (5,2) \\
& (3,3) & (4,3) & (5,3)
\end{array}\right\}=?
$$

$$
(4,4) \quad(5,4)
$$

(s, S)

Problem 5, page 204.

Write out the sets A and $R \subseteq A \times A$ described by this diagram.

