$$
\begin{aligned}
& F_{n}=F_{n-1}+F_{n-2}=1, \quad F_{2}=1 \\
& \begin{array}{l}
1,1,2,3,5,8,13,21,34, \ldots \\
\text { odd odd even odocolde even, }
\end{array} \quad\left[\begin{array}{l}
F_{n} \text { is even if } 3 / n . \\
F_{n} \text { is odd if } 3 \nmid n .
\end{array}\right]
\end{aligned}
$$

$$
3 \ln \Rightarrow F_{n} \text { even. }
$$

F_{r} even $\Rightarrow 31 n$ but the contrapositive of this is

$$
\begin{aligned}
& \quad 3 X_{n} \Rightarrow F_{n} 000 . \\
& F_{n}=\frac{F_{n-1}+F_{n-2} \quad n \geqslant 4}{F_{n}} \frac{F_{n-1}}{F_{n-2}+F_{n-3}} n \geqslant 3 \\
& F_{n}=F_{n-2}+F_{n-3}+F_{n-2}=2 F_{n-2}+F_{n-3} \quad n \geqslant 4
\end{aligned}
$$

So F_{n} has same parity ara. F_{n-3} for all $d \geqslant 4$.
Inductive hypothesis: $n \geq 4$
for all $K<n, F_{k}$ is even $\Leftrightarrow K$ is a multiple of 3
when $n=4$, $\operatorname{ded} F_{1}, F_{2}, F_{3}$ satisfy
F_{k} is even $\Leftrightarrow K$ is a moltale
Assure true fer $n \geqslant 4$ and that is of true,
We want F_{n} is even $\Leftrightarrow 3 / n$.
We know F_{n} has same parity as F_{n-3}. $n-3<n$ our hypothesis sangs F_{n-3} is even of and sly if $3((n-3)$.
(1) If $3 /(n-3)$ then $a=(n-3)+3$ F_{a} is even 3 also divides n, since F_{n-3} is even.
(2) if $3 t(n-3)$, then $3 \not x n$. and canunsely.
so F_{n-3} is od a and so is F_{n}.

