
Fundamental Theorem of Arithmetic
First Step (Prop 10.1 pg 186)
Recall that, if a and b are natural numbers, there are integers k and l so that

gcd(a, b) = ak + bl.

Proposition: Suppose that n Ø 2 and that a1, . . . , an are n integers. Let p be
a prime number. If p|(a1 · a2 · · · an) then p divides at least one of the ai.
Proof:
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Second Step (Theorem 10.1, page 192)
Proposition: Any integer n > 1 has a unique prime factorization, meaning it
can be written as a product of prime numbers, and any two such products di�er
only up to the order of the factors.
Step 1: Every integer has a prime factorization (strong induction).
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Step 2: The prime factorization is unique (minimal counterexample).
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