Fundamental Theorem of Arithmetic

First Step (Prop 10.1 pg 186)

Recall that, if a and b are natural numbers, there are integers k and l so that

$$gcd(a,b) = ak + bl.$$

Proposition: Suppose that $n \ge 2$ and that a_1, \ldots, a_n are *n* integers. Let *p* be a prime number. If $p|(a_1 \cdot a_2 \cdots a_n)$ then *p* divides at least one of the a_i .

Proof:
If a,....a_n = pk fn somek then one of a:= pk'
fn some k'. e.g: 7 | 21.16
$$\Rightarrow$$
 7/21.
Proof by induction. We must show that
if pla, a_2 thepla, or plaz.
Note: gcd(p,a,) has 2 possibilities. Ether
gcd(p,a) = p or gcd(p,a) = 1. If it's p,
gcd(p,a) = p or gcd(p,a) = 1. If it's p,
if an pla, so we are dore. If gcd(p,a,) = 1
we can find K, l so that
gcd(qp)=1 = pk+a, l.
... $a_2 = pa_2k + a_1a_2 l$
Since pla, $a_2 = pS$
 $a_2 = pa_2k + pSl = p(a_2k+Sl)$
 $a_2 = pa_2k + pSl = p(a_2k+Sl)$
Now suppose that, if pla,....a_n, then pla: fn some i.
We must how that if pla,...a_n and then pla: fn some i.
But $p[(a_1,...,a_n)a_{n+1} = 0$ by the case $n = 2$ either plant
or $p[a_1,...,a_n]$. By inductive hypotheor,
 $p[Si fn some i. this finishes proof.$

Second Step (Theorem 10.1, page 192)

Proposition: Any integer n > 1 has a unique prime factorization, meaning it can be written as a product of prime numbers, and any two such products differ Step 1: Every integer has a prime factorization (strong induction).

 \cap

Step 2: The prime factorization is unique (minimal counterexample).

Assume that there is some integer
which has 2 different prime factorizetions.
Pick the smallest such integer N.

$$n = p_1 - - p_r = q_1 - - q_s$$
 are prime.
NOW pilm so $p_1 | q_1 - q_s$.
Tendore there is some $q_1 | L = q_s$, so that
 $p_1 | q_1 | so p_1 = q_1$.
 $n_1 = n/p_1 = p_2 - p_r = q_1 - q_{1-1} q_{1+1} - q_s$
 $n_1 < n$ so it has a unique brizetion.
 $q_1 q_2 r - q_{1-1} q_3 + q_{1+1} - q_s$
 $n_1 = p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_1 = p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_1 = p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_2 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_3 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_4 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_5 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_5 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_6 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_6 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_6 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_{1+1} - q_s$
 $n_6 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_1 q_1 + q_s$
 $n_6 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_1 q_1 + q_s$
 $n_7 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_1 q_1 + q_s$
 $n_8 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_1 q_1 + q_s$
 $n_8 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_1 q_1 + q_s$
 $n_8 = p_1 p_2 - p_r = q_1 (q_1 - - q_1) q_1 q_1 + q_s$
 $n_8 = p_1 p_2 - p_1 q_1 q_1 q_1 q_1 q_1$