Strong Induction Continued

Exercise 13, page 195

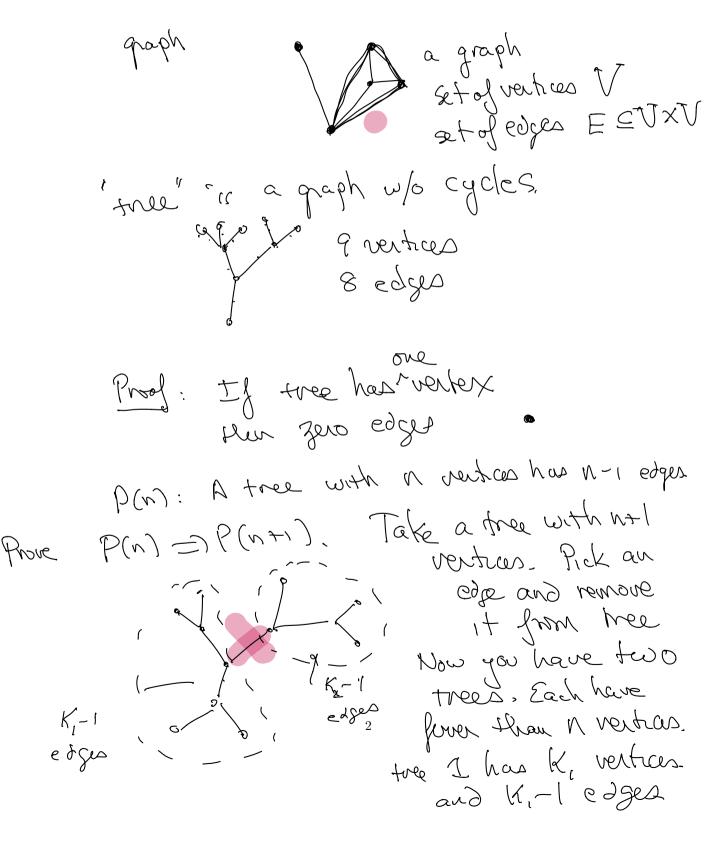
Proposition: Prove that $6|(n^3 - n)$ for all $n \ge 1$.

Dry Run.
$$P(1): 6|i^{3}-1$$
 or $6|0$ TRUE
 $P(n): 6|n^{3}-n$
Suppose $P(n)$ is true, so $6|n^{3}-n$.
IS $P(n+i)$ true? Doep $6|(n+i)^{3}-(n+i)$
 $(n+i)^{3} = n^{3}+3n^{2}+3n+1$
 $n+1$
 $(n+i)^{2}-(n+i): n^{3}+3n^{2}+2n$ decuit look drustle
 $In+1$
 $(n+i)^{2}-(n+i): n^{3}+3n^{2}+2n$ decuit look drustle
 $Vg 6!$
Try a gain with strong molectum.
 $P(2): 6|2^{3}-2 = 6|6$ TRUE
 $P(3): 6|3^{3}-3 = -6(2^{2}-3) = 6(2^{2}+72^{2}) = 6(2^{2}+72^{2}) = 6(2^{2}+72^{2}) = n^{3}+6n^{2}+12n+8$
 $n+2$
 $P(n+2): (n+2)^{3}-(n+2) = n^{3}+6n^{2}+12n+8$
 $n+2$
 $(n^{3}-n) + (6n^{2}+12n+6) - n$
 $= (n^{3}-n) + (6n^{2}+12n+6)$
 $(n^{3}-n) rs drustle by 6 so $P(n+2)$ is true
 $P(n) = P(n+2)$ for all n .
 $P(n-1) = P(n+1)$ for all n .$

If
$$P(i)$$
 is true and
 $P(i) \wedge \dots \wedge P(n) \implies P(n+i)$
Hen $P(n)$ is true for all N .
We can apply this to our setuction
 $we can apply this to our setuction
 $p(n) \implies P(3) \implies P(3) \implies P(n) \dots \dots$
 $P(n) \implies true when n is odd.$
 $Ef(n odd, then b [n^3-n]$.
 $P(2) \implies P(4) \implies P(b) \implies \dots$
 $Ef(n^3-n) p(n) n is true when then b [n^3-n]$.$

Trees (text, pages 189-190)

Proposition: A tree with n vertices has n - 1 edges.



tree 2 has
$$K_2$$
 vertaes
and $K_2 - 1$ edges
Containing:
original tree has $n+1 = K_1 + K_2$ vertices
 $(K_1 - (1 + K_2 - 1) + 1 e dges)$.
 $n_1 + K_2 - 1 = n edges$.
This proves the proposition
Fact: Connected graph
 $V - E = 1 - \# cycles$
 $H cycles = 1 - V + E$
 $V = E + 1$
 $1 - (1 + E) + E = D$