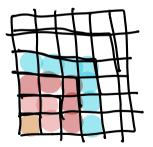
Introduction to mathematical induction

A sample problem

Proposition: The sum of the first *n* odd natural numbers is n^2 .

The first *n* odd numbers are $1, 3, \ldots, 2n - 1$. So in summation notation this is the claim that, for all $n \in \mathbb{N}$,

_ •



Sample problem continued.

The proposition above is infinitely many statements.

P=20 P=2P=2P2=2P320

n	sum of the first n odd natural numbers	n^2
1	1 =	1
2	$1+3 = \ldots$	4
3	$1+3+5 = \dots $	9
4	$1+3+5+7 = \dots $	16
5	$1+3+5+7+9 = \dots $	25
:	:	:
n	$1 + 3 + 5 + 7 + 9 + 11 + \dots + (2n - 1) = \dots$	n^2
:		÷

Figure 1: From pg. 180 of the text

Sample continued

We can prove any *one* of these statements.

How do we prove *all* of them?

Mathematical induction

Mathematical induction *extends* our system of logic by adding an axiom.

Axiom of Induction: Let P(n) be a collection of statements, one for each <u>natural number</u>. Suppose that P(1) is true and, for all n, the implication $P(n) \implies P(n+1)$ is true. Then P(n) is true for all n.

The book calls this a *method of proof* but it is really an axiom.

$$P(1) + rve \qquad to [P(1) = P(2) = P(3) =)$$

 $P(3) = P(3)$
 $P(3) = P(4)$
 $P(3) = P(4)$

A prototype

Proposition: Suppose that *S* is a set such that $1 \in S$ and, for all $n, \in \mathbb{N}$, if $n \in S$, then also $n + 1 \in S$. Then $\mathbb{N} \subseteq S$.

Proof: Let P(n) be the statement $n \in S$. The hypotheses say that P(1) is true, and that $P(n) \implies P(n+1)$. Therefore P(n) is true for all n, and so every natural number is in S, so $\mathbb{N} \subset S$.

Proof of the result on sum of odd numbers

Proposition: For all *n*, we have

$$\sum_{i=1}^{n} (2n-1) = n^2.$$

Proof: We apply mathematical induction. The statement P(n) is

$$\mathcal{P}(n): \sum_{i=1}^{n} (2n-1) = n^2.$$

So P(1) is the claim that $1 = 1^2$, which is true. To prove that $P(n) \implies P(n+1)$, we assume P(n) true: $P(n): 1+3+5+\cdots+(2n-1)=n^2$.

$$P(n+1): [+3+5+---+(2n-1)+(2n+1)=(n+1)^2$$

 $2(n+1)-1$

Proof, continued

$$1+3+5+\dots+(2n-1)+(2(n+1)-1) =$$

 $1+3+5+\dots+(2n-1)+2n+1 =$
 $n^2+2n+1=(n+1)^2.$

Therefore, if P(n) is true then P(n+1) is also true. By mathematical induction P(n) is true for all n.