Summation notation

"Recall" that we can write a long sum of a bunch of numbers using

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{i}} + \dots = \sum_{\substack{i=1\\i=1}}^{\infty} \frac{1}{2^{i}}$$

$$i + ches \text{ on every value in [N]}$$

Suppose we have a bunch of sets A_1, A_2, \ldots, A_n . Then we can write:

$$A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i \qquad \bigcup_{i=1}^n A_i$$

 $\quad \text{and} \quad$

$$A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$$

If A_1, A_2, \ldots, A_n are all sets, then

 $\bigcup_{i=1}^{n} A_{i} = \{x : x \text{ belongs to at least one set } A_{i}\}$ $A_{1} = \{1, 4, 10, 12\} \quad (= \bigcup_{i=1}^{3} A_{i} = A_{i} \cup A_{2} \cup A_{3}$ $A_{2} = \{5, 12, 15\} \quad (= \bigcup_{i=1}^{3} A_{i} = \{x : x \in A_{i} \cup A_{2} \cup A_{3} = \{1, 4, 15, 35\}$ $What is \bigcup_{i=1}^{3} A_{i}?$

$$Y = \{1, 4, 10, 12, 5, 15, 35\}$$

 $\bigcap A_i = \{x : x \text{ belongs to every set } A_i\}$ 4&A2 15&A1 What is $\bigcap_{i=1}^{3} A_i$? 10&A2 35&A2 > Nothing 12 & A3 $Y = \phi$

One can also take the union and intersection of infinitely many sets. $\leq \mathbb{Z}$ $A_1 = \{-1, 0, 1\}$ $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$. $A_2 = \{-2, 0, 2\}$ Example. For each $i \in \mathbb{N}$, let $\leq \mathbb{Z}$ $A_{i} = \{-i, 0, i\} \qquad A_{3} = \{-3, 0, 3\}$ 57 OD A: = {x: x belongs brone of A: }. Z=1 Any integr belongs to some A:. Take an integr N. Nen n E An = Z-n, o, us. So every integri belongs to O A: So every integri belongs to O A: So Z= O A: i=1 What is $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$? A:= [x: X blongs b every Ai]. Only zero has

Instead of numbering the sets, one can label them with elements of any set I called an index set.

 $\bigcup_{i \in I} A_i$ is the set of elements that belong to *at least one* of the sets A_i .

 $\bigcap_{i \in I} A_i$ is the set of elements that belong to every one of the sets A_i . A_1, A_2, \ldots what about Ar freug vel number v. UA: <u>Insked</u> UA: i=1 121

Index sets example

Let C be the set of Counties in the state of Connecticut (there are 8 of these). For each county $c \in C$, let T(c) be the set of Towns in that County.

For example, if c is Tolland County, then the elements of T(c) are Andover, Bolton, Columbia, Coventry, Ellington, Hebron, Mansfield, Somers, Stafford, Tolland, Union, Vernon, and Willington.

Let

$$\mathbb{R}_{+} = \{r : r \in \mathbb{R}, r > 0\}. \cong (\bigcirc)$$

For every real number $r \in \mathbb{R}_{+}$, let

x"+y" < 4

 \mathbb{A}_2

What is $\bigcap_{r \in \mathbb{R}_+} A_r$? What, if any pair (xy) in Ar for every vo? x2+y2×r2 for every relRt Inside circle of radius r 20 r no matter how small r gets. $(0,0) \in \bigcap A_r$ $(0,0) \in A_r$ because rellet B2 to2 K 12 cloore r'c X2ry2 OKr2 rlen (X, Y) & Ar', sonot in MrektAr. (x,y) $\bigcap_{r\in R_{s}} A_{r} = \left\{ (0,0) \right\}$

Example

Example TET Suppose that I and J are sets, that $J \neq \emptyset$, and that **E** Is We know $\bigcap A_a \subseteq \bigcap A_a?$ $\begin{array}{ccc} I & I & I & I \\ a \in I & a \in J \\ \vdots & Sets & A_{a} \end{array}$ Explain. $T = \{1, 2, 3\}$ $J \neq \phi$ and $J \subseteq I$. T = { 1,2} We have A 1, A2, A3 $\bigcap A_a = A_1 \cap A_2 \cap A_3$ A ET A A = A, MA2 A EJ In this care the question is: I_{S} A, $\Lambda A_{2} \Lambda A_{3} \leq A, \Lambda A_{2}$?

General cure:
if x belongs to
$$A_a$$
 for every $a \in I_s$
if x belongs to A_a for every
then, since $J \subseteq I$, x belongs to A_a for every
 $a \in J$. therefore
 $\bigcap A_a \subseteq \bigcap A_a$
 $a \in I$ $a \in J$
 I