Chapter 1 Section 1

A Set is <u>collection</u> of <u>things</u>, called the <u>"elements</u>" of the set.
Two sets are the same means they have exactly the same elements. Knowing the elements means knowing the set.

A set can be described by listing its elements using curly braces.

$$A = \{1, 2, 3\}$$

means A is the set whose elements are 1, 2, and 3. The symbols $\{$ and $\}$ are special and are used to describe sets.

Note: The sets $A = \{1, 2, 3\}$ and $\underline{B} = \{3, 1, 2\}$ are the same because they have the same elements. So we write A = B.

The symbol (ϵ) which looks a little like a backwards 3 and a little like a greek ϵ , means "is an element of."

A= 21,2,3 3

▶ $1 \in A$ means 1 is an element of the set A.

The symbol $\not\in$ means "is not an element of."

▶ $5 \notin A$ means that 5 is not an element of A.

Basic examples

- ► The natural numbers \mathbb{N} is the set of counting numbers 1, 2, 3, ... $\mathbb{N} = \{1, 2, 3, ...\}$
- The integers are the are the positive and negative whole numbers, and zero:

$$\underline{\mathbb{Z}} = \{ \ldots, -5, -4, -3, -2, -1, 0, 1, 2, 3, \ldots \}$$

The rational numbers \mathbb{Q} are the positive and negative fractions and zero. $\frac{1}{2} \in \mathbb{Q} \qquad \frac{3}{4} \in \mathbb{Q} \qquad -53 = -\frac{53}{4} \in \mathbb{Q}$

We take for granted addition, multiplication, commutative, associative, laws_etc.

Other sets

English the alphabet = {A,B,C,D,...} the set of words in English the set of people now living the set of chairs in my house (what's a chair....)

Etements must manbiguously specified to define a set.

There is exactly one set which nas no elements, called the *empty set*. The empty set can be written \emptyset or $\{\}$.

The cardinality of a set

If A is a set, we write |A| for the number of elements in the set if that number is finite.

▶ If
$$A = \{1, 2, 3\}$$
 then $|A| = 3$

We will study cardinality in more detail at the end of the class; for now, we will take this idea for granted. We also take for granted that a set like Z has infinitely many elements.

$$|\mathbb{Z}| = \infty$$

The real numbers

The real numbers is the set of all numbers with possibly infinite decimal expansions (positive or negative). A proper definition is hard to give and is usually done in analysis. We will work with the real numbers informally as we did in Calculus.

