
5. Field Theory Basics



Basics of field theory



Things to remember from before.

We already know quite a bit about fields.



Characteristic

If F is a field, then there is a ring homomorphism Z→ F sending
1→ 1. If this map is injective, then:

I we say F has characteristic zero
I F contains a copy of the rational numbers
I The field Q is the prime subfield of F .

Otherwise the kernel of this map must be a prime ideal pZ of Z. In
this case:

I we say that F has characteristic p
I F contains a copy of Z/pZ.
I Z/pZ is the prime subfield of F .



Maps

If f : F → E is a homomorphism of fields, it is automatically
injective (or zero).

The only field maps f : Q→ Q and f : Z/pZ→ Z/pZ are the
identity.



Extensions

If F is a field, and F ⊂ E where E is another field, then we call E
an extension field of F .

E is automatically a vector space over F . The degree of E/F ,
written [E : F ], is the dimension of E as an F -vector space.



Polynomials, quotient rings, and fields

We have the division algorithm for polynomials. F [x ] is a PID. An
ideal is prime iff it is generated by an irreducible polynomial.

Let p(x) be an irreducible polynomial of degree d over F . Then:

I K = F [x ]/(p(x)) is a field
I It is of degree d over F .
I p(x) has a root in K (namely the residue class of x)
I The elements 1, x , . . . , xd−1 are a basis for K/F .



Adjoining roots of polynomials

If F ⊂ K is a field extension, and α ∈ K , then F (α) is the smallest
subfield of K containing F and α. Similarly for F (α1, α2, . . . , αn).

If p(x) is irreducible over F , and has a root α in K , then F (α) is
isomorphic to F [x ]/p(x) via the map x 7→ α.



Key Theorem

Let K be a field extension of F and let p(x) be an irreducible
polynomial over F . Suppose K contains two roots α and β of p(x).
Then F (α) and F (β) are isomorphic via an isomorphism that is the
identity on F .

More generally:

Theorem: (See Theorem 8, DF, page 519) Let φ : F → F ′ be an
isomorphism of fields. Let p(x) be an irreducible polynomial in F [x ]
and let p′(x) be the polynomial in F ′[x ] obtained by applying φ to
the coefficients of p(x). Let K be an extension of F containing a
root α of p(x), and let K ′ be an extension of F ′ containing a root β
of p′(x). Then there is an isomorphism σ : F (α)→ F ′(β) such that
the restriction of σ to F is φ.



Algebraic Extensions



Definition

Definition: Let F ⊂ K be a field extension. An element α ∈ K is
algebraic over F if it is the root of a nonzero polynomial in F [x ].
Elements that aren’t algebraic are called transcendental.

An extension K/F is algebraic if every element of K is algebraic
over F .



Basics

I If α is algebraic over F , there is unique monic polynomial
mα,F (x) of minimal degree with coefficients in F such that
mα(α) = 0. (This follows from the division algorithm). This
polynomial is called the minimal polynomial of α over F . Its
degree is the degree of α.

I If F ⊂ L, then the minimal polynomial mα,L(x) ∈ L[x ] of α
over L divides the minimal polynomial mα,F (x). Again, this
follows from the division algorithm for L[x ].

I F (α) is isomorphic to F [x ]/mα,F (x); and the degree [F (α) : F ]
is the degree of α.



Examples

If n > 1 and p is a prime, then the polynomial xn − p is irreducible
over Q, so α = n

√p has degree n over Q.

The polynomial x3 − x − 1 is irreducible over Q and has one real
root α. So α has degree 3 over Q but degree 1 over R.



Finite extensions are algebraic

Suppose K/F is finite and let α be an element of K . Then there is
an n so that the set 1, α, α2, . . . , αn are linearly dependent over F ;
so α satisfies a polynomial with F coefficients, and is therefore
algebraic.

As a partial converse, if F (α)/F is finite if and only if α is algebraic.
If α is algebraic of degree d over F , F (α) = F [x ]/(mα(x)) which is
finite dimensional (with basis 1, x , x2, . . . , xd−1.)



Algebraic over algebraic is algebraic

Proposition: If K/F is algebraic and L/K is algebraic then L/F is
algebraic.

Proof: Let α be any element of L. It has a minimal polynomial
f (x) = xd + ad−1xd−1 + · · ·+ a0 with the ai ∈ K . Therefore α is
algebraic over F (a0, . . . , ad−1). Since the ai are in K , they are
algebraic over F , and therefore F (a0, . . . , ad−1) is finite over F and
so is F (α, a0, . . . , ad−1). Thus F (α) is contained in a finite
extension of F and so α is algebraic over F .



Field Degrees



Multiplicativity of degrees

Proposition: Suppose that L/F and K/L are extensions. Then
[K : F ] = [K : L][L : F ].

Proof: If α1, . . . , αn are a basis for L/F , and β1, . . . , βk are a basis
for K/L, then the products αiβj are a basis for K/F .

Corollary: If L/F is a subfield of K/F , then [L : F ] divides [K : F ].



Finitely generated extensions

A field K/F is finitely generated if K = F (α1, . . . , αn) for a finite
set of αi in K .

Proposition: F (α, β) = F (α)(β).

Proof: F (α, β) contains F (α) and also β. Therefore
F (α)(β) ⊂ F (α, β). On the other hand, since α and β are in
F (α)(β), we know that F (α, β) ⊂ F (α)(β).



Finite is finitely generated
Proposition: A field K/F is finite if and only if it is finitely
generated. If it is generated by α1, . . . , αk then it is of degree at
most n1n2 . . . nk where ni is the degree of αi over F .

Proof: If it’s finitely generated, then it’s a sequence of extensions
F (α1, . . . , αs−1)(αs) each of degree at most ni . So K/F is finite.
Conversely, if K/F is finite (and of degree greater than 1), choose
α1 ∈ K of degree greater than 1. Then F (α) ⊂ K and [K : F (α)] is
smaller than [K : F ]. Now choose α2 in K but not F (α1), and so
on. This process must terminate.

Corollary: If α and β are algebraic over F , so are α+ β, αβ, and
(if β 6= 0) α/β.

Proof: All these elements lie in F (α, β) which is finite over F .

Corollary: If K/F is a field extension, the subset of K consisting of
algebraic elements over F is a field (called the algebraic closure of F
in K ).



Towers of algebraic extensions are algebraic

Propositoin: If L/K is algebraic and K/F is algebraic so is L/F .

Proof: Choose α ∈ L. Then α satisfies a polynomial
f (x) = xd + ad−1xd−1 + · · ·+ a0 where the ai are in K . Therefore
α is algebraic over E = F (a0, a1, . . . , ad−1). But E/F is finitely
generated hence finite. Therefore [E (α) : F ] = [E (α) : E ][E : F ] is
finite. Thus every element of L is algebraic over F .



Composites

If K1 and K2 are subfields of a field K , then K1K2 is the smallest
subfield of K containing these two fields. Then [K1K2 : F ] is
divisible by both [K1 : F ] and [K2 : F ] and in addition

[K1K2 : F ] ≤ [K1 : F ][K2 : F ].

In particular, if [K1 : F ] and [K2 : F ] are relatively prime, then
[K1K2 : F ] = [K1 : F ][K2 : F ].



Classical Constructions (Ruler and Compass)

Classical ruler and compass constructions allow one to:

I find the point of intersection of two lines.
I find the point of intersection of a line and a circle.
I find the points of intersection of two circles.



Constructions

If we begin with a line segment of length 1, we can:

I construct a perpendicular, and then construct all integer
lengths along that line

I construct all points with integer coordinates in the plane
I using similar triangles, construct all points in the plane with

rational coordinates



Extensions

Now suppose we can construct all points with coordinates in a field
F . Then:

I intersections of lines joining points of over F meet in points
with coordinates in F

I intersections of a line joining two points with coordinates in F
with a circle of radius in F yields points in a quadratic
extension of F .

I intersections of two circles with radii in F yields points with
coordinates in a quadratic extension of F .



Gauss’s Theorem on constructibility
Theorem: If a line segment of length α is constructible by ruler and
compass, then α lies in a field obtained from Q by a sequence of
quadratic extensions, and [F (α) : F ] = 2k for some integer k ≥ 0.

Corollary: One cannot “double the cube” , trisect an angle, or
square the circle.

Here doubling the cube means given a length α construct a length
β so that the cube with side length β has double the volume of the
cube with side length α. This is impossible because 3√2 does not
meet Gauss’s criterion.

Squaring the circle means, given α, constructing a length β so that
a square of side β has the same area as a circle of radius α. This is
impossible because π is not algebraic (we won’t prove this).

Trisecting the angle means constructing an angle with one-third the
measure of a given angle θ. If we can trisect θ, we can construct a
length of cos(θ/3). If θ = π/3, then θ/3 = π/9 or β = cos 20◦.
One can show that, if u = 2β, then

u3 − 3u − 1 = 0.

This polynomial has no rational roots (it is irreducible mod 2 for
example).

A pentagon is constructible because the cos(2π/5) is the root of a
quadratic polynomial.
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